Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC vuông tại B
=> \(\widehat{B}=90^o\)
Áp dụng định lý tổng 3 góc trong 1 tam giác vào tam giác ABC vuông tại B có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\\ \Rightarrow55^o+90^o+\widehat{C}=180^o\\ \Rightarrow\widehat{C}=180^o-90^o-55^o=35^o\)
Vậy số đo góc C là `35^o`
a) vì ΔABC cân tại A nên ta có :
\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)
ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (tổng số đo ba góc trong 1 tam giác)
\(\Rightarrow\widehat{A}+55^o+55^o=180^o\)
\(\Rightarrow\widehat{A}=180^o-55^o-55^o=70^o\)
vậy \(\widehat{A}\) có số đo là 70o
b) xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (vì M là trung điểm của BC)
AM là cạnh chung
⇒ ΔAMB = ΔAMC (c.c.c)
⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
ta có : \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^o}{2}=90^o\)
⇒ AM ⊥ BC
b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)
c: Số đo góc ở đỉnh là:
\(180-2\cdot20^0=140^0\)
d: Số đó góc ở đáy là:
\(\dfrac{180^0-60^0}{2}=60^0\)
Ta có : ^A + ^B + ^C1 = 1800
<=> 450 + 550 + ^C1 = 1800
<=> ^C1 = 1800 - 450 - 550 = 800
Suy ra : C1 + C2 = 1800
<=> C2 = 1800 - C1 = 1800 - 800 = 1000
Vậy số đo góc ngoài tại đỉnh C là 1000
góc BAC=180-75-55=180-130=50 độ
=>góc BAD=góc CAD=25 độ
góc ADC=75+25=100 độ
\(\widehat{C}=180^0-\stackrel\frown{B}-\widehat{A}=180^0-90^0-52^0=38^0\)
\(\widehat{C}=180^\circ-90^\circ-55^\circ=35^\circ\)
ˆC=180∘−90∘−55∘=35∘