Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD//CH
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: BHCD là hình bình hành
nên BC cắt HD tại trung điểm của mỗi đường
=>I là trung điểm của HD
Xét ΔDAH có DI/DH=DO/DA
nen Io//AH và IO=AH/2
=>AH=2OI
chỉnh lại câu 1 tí:
1)
+ Xét tứ giác AEFD : ADF +AEF = 90 +90 = 180
Suy ra: Tứ giác AEFD nội tiếp được đường tròn
Suy ra: EAF = EDF hay EAF = EDC
+ Xét tgAEF và tg EDC : AEF = ECD = 90 VÀ EAF = EDC
Suy ra: tgAEF ~ tgDCE => .AE /AF = CD/DE
2.
Tứ giác AEFD nội tiếp được đường tròn
=> EAF = EDF mặt khác EAF = EDC mặt khác : EAF + HAG = 90 VÀ EDC + HEG =90
suy ra: HAG = HEG suy ra tứ giác AEGH nội tiếp được đường tròn => HGE = 90
Vì HGE = HAE = 90 ,suy ra đường tròn này có tâm O là trung điểm của AE.
3.
Đường tròn ngoại tiếp tam giác AHE chính là đường tròn (O).
+ Xét tam giác HGE : và OH = OE = 1/2. HE => OH = OE = OG.
+ Xét tg OEK và tg OGK :
OE = OG ; OK chung ;EK = GK( Vì K thuộc đường trung trực của đoạn thẳng EG)
Suy ra tgOEK =tg OGK (c – c – c) => KGO = KEO = 90 độ
Suy ra: KG vuông góc với OG, vậy KG là tiếp tuyến của đường tròn ngoại tiếp tam giác HAE.(đpcm).
a) Xét ΔAMK vuông tại A và ΔCMH vuông tại C có
MA=MC(M là trung điểm của AC)
\(\widehat{AMK}=\widehat{CMH}\)(hai góc đối đỉnh)
Do đó: ΔAMK=ΔCMH(cạnh góc vuông-góc nhọn kề)
Suy ra: AK=CH(hai cạnh tương ứng)
Xét tứ giác AKCH có
AK//CH(\(\perp AC\))
AK=CH(cmt)
Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)
a: Xét ΔABC vuông tại B có BK là đường cao
nên \(\dfrac{1}{BK^2}=\dfrac{1}{BA^2}+\dfrac{1}{BC^2}\)
hay BK=4,8cm
b: Xét ΔABC vuông tại B có BK là đường cao
nên \(AK\cdot AC=BA^2\)
\(\Leftrightarrow AK\cdot AC=\left(2\cdot AI\right)^2=4\cdot AI^2\)