K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2023

A B C H M I

a/ Xét tg vuông BAC và tg vuông HAB có

\(\widehat{ACB}=\widehat{ABH}\) (cùng phụ với \(\widehat{BAC}\) )

b/

\(BC=\sqrt{AC^2-AB^2}\) (Pitago)

\(\Rightarrow BC=\sqrt{25^2-15^2}=20cm\)

\(\dfrac{MA}{AB}=\dfrac{MC}{BC}\) (T/c đường phân giác)

\(\Rightarrow\dfrac{MA}{15}=\dfrac{MC}{25}\Rightarrow\dfrac{MA}{MC}=\dfrac{15}{25}=\dfrac{3}{5}\)

\(\Rightarrow MC=\dfrac{AC}{3+5}x5=\dfrac{25}{8}x5=15,625cm\)

c/

\(AB^2=AH.AC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow AH=\dfrac{AB^2}{AC}\)

AM=AC-MC

HM=AM-AH

\(BH^2=AH.HC\)(trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

Xét tg vuông BHM

\(BM=\sqrt{BH^2+HM^2}\)

Ta có

\(AB\perp BC;MI\perp BC\) => MI//AB

\(\Rightarrow\dfrac{BI}{AM}=\dfrac{CI}{MC}\Rightarrow\dfrac{BI}{CI}=\dfrac{AM}{MC}\) (talet trong tg)

Từ đó tính được CI

Bạn tự thay số và tính toán

18 tháng 8 2023

\(a.\) Xét \(\Delta BAC\) và \(\Delta HAB\) \(\left(\widehat{B}=\widehat{H}=90^o\right)\), ta có:
\(\widehat{A}\) là góc chung
\(\Rightarrow\Delta BAC\sim\Delta HAB\) \(\left(g-g\right)\)
\(b.\) Xét \(\Delta ABC\) vuông tại \(\widehat{B}\), ta có:
\(AC^2=AB^2+BC^2\) \(\left(Pytago\right)\)
\(\Rightarrow BC^2=AC^2-AB^2=25^2-15^2=625-225=400\)
\(\Rightarrow BC=\sqrt{400}=20\) \(\left(cm\right)\)
Do \(BM\) là đường phân giác của \(\Delta ABC\)
\(\Rightarrow\dfrac{AB}{AM}=\dfrac{BC}{MC}\) \(\Rightarrow\dfrac{AB}{AC-MC}=\dfrac{BC}{MC}\)
\(\Rightarrow AB\cdot MC=BC\cdot\left(AC-MC\right)\)
\(\Leftrightarrow AB\cdot MC=AC\cdot BC-BC\cdot MC\)
\(\Leftrightarrow AB\cdot MC+BC\cdot MC=AC\cdot BC\)
\(\Leftrightarrow MC\left(AB+BC\right)=AC\cdot BC\)
\(\Leftrightarrow MC=\dfrac{AC\cdot BC}{AB+BC}=\dfrac{25\cdot20}{15+20}=\dfrac{500}{35}=\dfrac{100}{7}\approx14,29\) \(\left(cm\right)\)

a: AC=căn 10^2-6^2=8cm

BM là phân giác

=>AM/AB=CM/BC

=>AM/3=CM/5=(AM+CM)/(3+5)=1

=>AM=3cm; CM=5cm

b: Xét ΔMAB vuông tại A và ΔMDC vuông tại D có

góc AMB=góc DMC

=>ΔMAB đồng dạng với ΔMDC

 

AC=căn 25^2-15^2=20cm

HC=AC^2/BC=20^2/25=16cm

1: AC=20cm

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{15\cdot20}{2}=150\left(cm^2\right)\)

2: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

3: Xét tứ giác AFDH có

AF//DH

AF=DH

Do đó: AFDH là hình bình hành

a: BC=5cm

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

c: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC

=>HA^2=HB*HC

24 tháng 4 2023

có cứt :)))) 

lol

 

a: BD/AD=BC/AC=5/4

b: Xét ΔHBA và ΔABC có

góc BHA=góc BAC

góc B chung

=>ΔHBA đồng dạng với ΔABC

c: Xét ΔDAC và ΔDKB có

góc DAC=góc DKB

góc ADC=góc KDB

=>ΔDAC đồng dạng với ΔDKB

=>DA/DK=DC/DB

=>DA*DB=DK*DC

5 tháng 5 2020

hình tự vẽ nhé 

5 tháng 5 2020

ok banj

13 tháng 9 2023

a) Ta có: \(BD + DC = BC \Rightarrow DC = BC - BD = 25 - BD\)

Vì \(AD\) là phân giác của góc \(BAC\) nên theo tính chất đường phân giác ta có:

\(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} \Leftrightarrow \frac{{BD}}{{25 - BD}} = \frac{{15}}{{20}} \Leftrightarrow 20.BD = 15.\left( {25 - BD} \right) \Rightarrow 20.BD = 375 - 15.BD\)

\( \Leftrightarrow 20BD + 15BD = 375 \Leftrightarrow 35BD = 375 \Rightarrow BD = \frac{{375}}{{35}} = \frac{{75}}{7}\)

\( \Rightarrow DC = 25 - \frac{{75}}{7} = \frac{{100}}{7}\)

Vậy \(BD = \frac{{75}}{7}cm;DC = \frac{{100}}{7}cm\).

 Vì \(DE//AB\) nên \(\frac{{DC}}{{BC}} = \frac{{DE}}{{AB}} \Rightarrow \frac{{\frac{{100}}{7}}}{{25}} = \frac{{DE}}{{15}} \Leftrightarrow DE = \frac{{100}}{7}.15:25 = \frac{{60}}{7}\) (hệ quả của định lí Thales).

Vậy \(BD = \frac{{75}}{7}cm;DC = \frac{{100}}{7}cm;DE = \frac{{60}}{7}cm\).

b) Xét tam giác \(ABC\) có:

\(B{C^2} = {25^2} = 625;A{C^2} = {20^2} = 400;A{B^2} = {15^2} = 225\)

\( \Rightarrow B{C^2} = A{C^2} + A{B^2}\)

Do đó, tam giác\(ABC\) là tam giác vuông tại \(A\).

c) Diện tích tam giác \(ABC\) là

\({S_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.15.20 = 150\left( {c{m^2}} \right)\).

Xét tam giác \(ADB\) và tam giác \(ABC\) ta có:

\(\frac{{BD}}{{BC}} = \frac{{\frac{{75}}{7}}}{{25}} = \frac{3}{7}\) và có chung chiều cao hạ từ đỉnh \(A\). Do đó, diện tích tam giác \(ADB\) bằng \(\frac{3}{7}\) diện tích tam giác \(ABC\).

Diện tích tam giác \(ADB\) là:

\({S_{ADB}} = 150.\frac{3}{7} = \frac{{450}}{7}\left( {c{m^2}} \right)\).

Diện tích tam giác \(ACD\) là:

\({S_{ACD}} = {S_{ABC}} - {S_{ADB}} = 150 - \frac{{450}}{7} = \frac{{600}}{7}\)

Vì \(ED//AB \Rightarrow \frac{{CE}}{{AE}} = \frac{{CD}}{{BD}} = \frac{{\frac{{100}}{7}}}{{\frac{{75}}{{100}}}} = \frac{4}{3}\)

Xét tam giác \(ADE\) và tam giác \(DCE\) ta có:

\(\frac{{CE}}{{AE}} = \frac{4}{3}\) và hai tam giác này có chung đường cao hạ từ \(D\).

Do đó, \(\frac{{{S_{ADE}}}}{{{S_{DCE}}}} = \frac{4}{3}\).

Diện tích tam giác \(ADE\) là

\({S_{ADE}} = \frac{{600}}{7}:\left( {3 + 4} \right).4 = \frac{{2400}}{{49}}\left( {c{m^2}} \right)\)

\({S_{DCE}} = \frac{{600}}{7}:\left( {3 + 4} \right).3 = \frac{{1800}}{{49}}\left( {c{m^2}} \right)\).

a: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=25/7

=>DB=75/7cm; DC=100/7cm

Xét ΔABC có DE//AB

nên DE/AB=CD/CB

=>DE/15=100/7:25=4/7

=>DE=60/7cm

b: Xét ΔABC có BC^2=AB^2+AC^2

nen ΔABC vuông tại A

=>S ABC=1/2*15*20=10*15=150cm2

c: DB/DC=3/7

=>S ABD/S ACB=3/7

=>S ABD=150*3/7=450/7cm2