K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

A B C M E

a.

MB = MC (AM là trung tuyến)

\(\widehat{AMB}\) = \(\widehat{EMC}\) (Góc đối)

MA = ME (Giả thuyết)

=> Tam giác ABM = Tam giác ECM (Cạnh - góc - cạnh)

b.

Tam giác ABM = Tam giác ECM 

ABM là tam giác vuông tại B

=> Tam giác ECM vuông tại C

=> EC vuông góc BC

Mà AB vuông góc BC

=> EC song song AB

c.

Ta có

\(\widehat{BAM}\) = 180o - 90o\(\widehat{AMB}\)(1)

\(\widehat{MAC}\) = 180o - \(\widehat{ACM}\) - \(\widehat{AMC}\)

=> \(\widehat{MAC}\) = 180 - \(\widehat{ACM}\) - (180o - \(\widehat{AMB}\))

=> \(\widehat{MAC}\) = \(\widehat{ACM}\) - \(\widehat{AMB}\)(2)

(1) và (2) => \(\widehat{BAM}\) > \(\widehat{MAC}\)(Vì góc \(\widehat{ACM}\) < 90o)

28 tháng 8 2021

mik cần gấp lm ơn giúp mik

 

28 tháng 8 2021

undefined

a: Xét ΔMAB và ΔMEC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó: ΔMAB=ΔMEC
b: Xét tứ giác ABEC có 

M là trung điểm của AE

M là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: AB//EC

a: Xét ΔMBA và ΔMCE có

MB=MC

góc BMA=góc CME

MA=ME

=>ΔMBA=ΔMCE

b: Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

=>ABEC là hình bình hành

=>BE//AC

26 tháng 2 2022

Cho tam giác ABC vuông tại B , M trên tia đối của t là trung điểm của BC. Trên tia AB lấy E sao cho MA=ME chứng minh rằng 

a.Tam giác ABM bằng tam giác ECM

b BC vuông góc với CE

 

.

 

 

a: Xét ΔABM và ΔECM có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó: ΔABM=ΔECM

b: Xét tứ giác BACE có

M là trung điểm của BC

M là trung điểm của AE

Do đó: BACE là hình bình hành

Suy ra: CE//AB

hay CE⊥BC

a: Xét ΔABM và ΔECM có

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔABM=ΔECM

b: ΔABM=ΔECM

=>góc ABM=góc ECM

=>AB//CE

c: AB=CE

AB<AC

=>CE<CA

=>góc CAE<góc CEA

=>góc CAE<góc BAE

9 tháng 5 2016

ai giúp tui với