K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

góc AEH=góc ADH=góc DAE=90 độ

=>ADHE là hình chữ nhật

góc NED=góc NEH+góc DEH

=góc DAH+góc NHE

=góc BAH+góc B=90 độ

=>NE vuông góc ED(1)

góc MDE=góc MDH+góc EDH

=góc MHD+góc EAH

=góc HAC+góc C=90 độ

=>DM vuông góc ED(2)

Từ (1), (2) suy ra ENMD là hình thang vuông

\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

BH=6^2/10=3,6cm

=>DM=1,8cm

HC=8^2/10=6,4cm

=>EN=3,2cm

AH=6*8/10=4,8cm

=>ED=4,8cm

\(S_{ENMD}=\dfrac{1}{2}\cdot\left(EN+DM\right)\cdot ED=\dfrac{1}{2}\cdot\left(3,2+1,8\right)\cdot2,4=1,2\cdot5=6\left(cm^2\right)\)

13 tháng 5 2023

ugyrfyhjhli.g,yzmtxlhyi5uw4edfgufjydte5kjfdredhedfrueiujfysahyAJUIDKFO GAFbb iywqfhuahsjkfhuiawd

 

12 tháng 10 2023

a) Xét tứ giác ADHE có:

\(\left\{{}\begin{matrix}\widehat{A}=90^o\\\widehat{HDA}=90^o\\\widehat{HEA}=90^o\end{matrix}\right.\)

=> ADHE là h.c.n

b) Ta có:

\(\left\{{}\begin{matrix}\widehat{BID}=2\widehat{IHD}\\\widehat{IKE}=2\widehat{KCE}\end{matrix}\right.\)

mà \(\widehat{IHD}=\widehat{KCE}\)

=> \(\widehat{BID}=\widehat{IKE}\) mà 2 góc có vị trí đồng vị

=> DI//EK

=> DEKI là hình thang

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

b: BC=10cm

AH=4,8cm

BH=3,6cm

CH=6,4cm

13 tháng 12 2016

1. qua de roi dung dinh li hinh chu nhat.

2.vi tam gic BDH vuong tai D co DM la duong trung tuyen nen DM=MN=BH/2

=>goc MDH = goc MHD(1)

tam gic DHE vuong tai H co HP la duong trung tuyen nen HP =DP=DE/2

=>goc HDP =goc DHP(2)

TU (1)(2) ma goc MHD+goc DHP=90

=.goc MDH +goc HDP=90=goc MDP

Tuong tu cm duoc goc NED=90

=>MDEN la hinh thanh vuong

3.dung dinh ly duong trung binh cua hinh thang

4.de dang cm duoc PN la duong trung binh tam giacHAC

=>PN //AC=>PN vuông góc với AB mà AH vuông góc với BC vá cắt PN tại P=>P la truc tam cua tam giac ABN

5.Ta co DM=BH/2

EN=HC/2

=>DM+EN=BC/2 (1)

Ta có S MNED = (MD+EN).DE/2 (2)

S ABC=AH.BC/2 (3)

AH=DE(4)

Tu (1)(2)(3)(4)=>S MNED=SABC/2

 

27 tháng 11 2017

ý 2 thiếu điều kiện // để chứng minh MDEN là hình thang .

19 tháng 4 2021

A B C 8 15 H M N 8

a, Xét tam giác ABC vuông tại A, đường cao AH 

\(AB^2+AC^2=BC^2\Rightarrow BC^2=64+225=289\Rightarrow BC=17\)cm 

Xét tam giác AHC và tam giác BAC ta có : 

^AHC = ^BAC = 900

^C _ chung 

Vậy tam giác AHC ~ tam giác BAC ( g.g )

\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\)( tỉ số đồng dạng ) 

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{8.15}{17}=\frac{120}{17}\)cm 

b, Vì MH vuông AB 

NA vuông AB 

=> MH // NA tương tự ta có : MH // AN 

=> tứ giác AMNH là hình bình hành 

mà ^HNA = 900 ; ^BAC = 900 ; ^HMA = 900

=> tứ giác AMHN là hình vuông 

19 tháng 4 2021

xin lỗi mình nhầm, => tứ giác AMNH là hình chữ nhật 

11 tháng 12 2021

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra:AH=DE