Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: Xét tứ giác ABDE có
C là trung điểm của BE
C là trung điểm của AD
Do đó: ABDE là hình bình hành
Suy ra: AB//DE
Bài 1 : Kẻ ON//BC và DM//BC ( N và M thuộc AC )
=> ON//DM
Xét tam giác MED có : OD=OE và ON//DM => EN=NM (1)
Mặt khác ta có DMBC là hình thang cân nên DB=CM
Mà DB=AE => AE=CM (2)
Cộng vế theo vế 1 và 2 ta có : AE+EN=CM+MN => AN=NC
Xét tam giác AHC có : ON//HC ( vì ON//BC ) và AN=NC => AN=NC ( t/c của đg trung bình ) => đpcm
Bài 12:
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=8^2+6^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Xét ΔABC vuông tại A và ΔADC vuông tại A có
AC chung
AB=AD(gt)
Do đó: ΔABC=ΔADC(hai cạnh góc vuông)
Suy ra: CB=CD(hai cạnh tương ứng)
Xét ΔEAB vuông tại A và ΔEAD vuông tại A có
EA chung
AB=AD(gt)
Do đó: ΔEAB=ΔEAD(hai cạnh góc vuông)
Suy ra: EB=ED(hai cạnh tương ứng)
Xét ΔCEB và ΔCED có
CE chung
CB=CD(cmt)
EB=ED(cmt)
Do đó: ΔCEB=ΔCED(c-c-c)
bạn tham khảo bài này nhé : https://olm.vn/hoi-dap/detail/100443553347.html