K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

A B C E D N M K H

CM : a)Xét t/giác ABC và t/giác ADE

có AB = AD (gt)

  góc EAD = góc BAC (đối đỉnh)

  AC = AE (gt)

=> t/giác ABC = t/giác ADE (c.g.c)

=> ED = BC (hai cạnh tương ứng) (Đpcm)

=> góc E = góc C (hai góc tương ứng)

Mà góc E và góc C ở vị trí so le trong

=> ED // BC (Đpcm)

b) Ta có: t/giác ABC = t/giác ADE (cmt)

=> góc D = góc B (hai góc tương ứng) (1)

Mà góc EDM = góc MDA = góc D/2 (2)

   góc ABN = góc NBC = góc B/2 (3)

Từ (1); (2); (3) => góc EDM = góc NBC

Xét t/giác EMD và t/giác CNB

có ED = BC (cmt)

góc EDM = góc NBC (cmt)

 góc E = góc C (cmt)

=> t/giác EMD = t/giác CNB (g.c.g) (Đpcm)

c) Ta có: t/giác EMD = t/giác CNB (cmt)

=> MD = BN (hai cạnh tương ứng)

Mà MK = KD = MD/2

    BH = HN = BN/2

=> KD = BH 

Từ (1); (2); (3) => góc MDA = góc ABN

Xét t/giác ADK và t/giác ABN

có AD = AB (gt)

 góc MDA = góc ABN (cmt)

 KD = BH (cmt)

=> t/giác ADK = t/giác ABN (c.g.c)

=> góc KAD = góc BAH (hai góc tương ứng)

Do B,A,D là ba điểm thẳng hàng nên góc BAM + góc MAK + góc KAD = 1800

hay góc BAM + góc MAK + góc BAH = 1800

=> ba điểm K, A,H thẳng hàng (Đpcm)

21 tháng 12 2016

                                                  hình bạn tự vẽ và từ ghi giả thiết, kết luận nhé.

                                                                               Giải:  

a) Xét tam giác EDA và tam giác CBA, có:

EA=AC(GT)

BA=AD(GT)

GÓC BAC=GÓC EAD (đối đỉnh)

=> tam giác EDA = tam giác CBA (C-G-C)

=>ED=BC ( 2 CẠNH TƯƠNG ỨNG)

CÓ: tam giác EDA= tam giác CBA, nên:

=> góc DEA=góc ACB( 2 góc tương ứng)

góc DEA=góc ACB( sole trong)

=> ED//BC

b) ............xin lỗi bạn nha. khi nào giải đc mik giải cho nhé =)). k mik nhé, mik chẳng bít đúng hay sai đâu =))

22 tháng 12 2021

\(a,\)(Sửa đề: \(\Delta ABD=\Delta EBD\))

Vì \(\begin{cases} AB=BE\\ \widehat{ABD}=\widehat{EBD}\\ BD\text{ chung} \end{cases}\) nên \(\Delta ABD=\Delta EBD(c.g.c)\)

\(\Rightarrow \widehat{BAD}=\widehat{BED}=90^0\\ \Rightarrow DE\bot BC\)

\(b,\Delta ABD=\Delta EBD(cmt)\\ \Rightarrow AD=DE\Rightarrow D\in\text{trung trực }AE\\ AB=BE\Rightarrow B\in \text{trung trực }AE\\ \Rightarrow BD\text{ là trung trực }AE\)

\(c,\begin{cases} \widehat{MAD}=\widehat{CED}=90^0\\ AD=DE\\ AM=EC \end{cases}\\\Rightarrow \Delta ADM=\Delta EDC(c.g.c)\\ \Rightarrow MC=MD\)

\(d,\Delta ADM=\Delta EDC(cmt)\\ \Rightarrow \widehat{ADM}=\widehat{EDC}\)

Mà 2 góc này ở vị trí đối đỉnh và \(A,D,C\) thẳng hàng nên \(M,D,E\) thẳng hàng

a: Xét ΔABD và ΔAED có

AB=AE
góc BAD=góc EAD

AD chung

Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b: Xét ΔDBH và ΔDEC có

góc DBH=góc DEC

DB=DE

góc BDH=góc EDC

Do đó: ΔDBH=ΔDEC

c: Ta có: ΔDBH=ΔDEC

nên góc DHB=góc DCE

d: Ta có: AH=AB+BH

AC=AE+EC

mà AB=AE; BH=EC

nên AH=AC

25 tháng 12 2023

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

b: Ta có: ΔABE=ΔADE

=>EB=ED

=>E nằm trên đường trung trực của BD(1)

Ta có: AB=AD

=>A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AE là đường trung trực của BD

=>AE\(\perp\)BD tại H và H là trung điểm của BD

c: Xét ΔEBM và ΔEDC có

EB=ED

\(\widehat{BEM}=\widehat{DEC}\)(hai góc đối đỉnh)

EM=EC

Do đó: ΔEBM=ΔEDC

=>\(\widehat{EBM}=\widehat{EDC}\) và BM=DC

Ta có: \(\widehat{EBM}=\widehat{EDC}\)

\(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

\(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)

Do đó: \(\widehat{EBM}+\widehat{EBA}=180^0\)

=>A,B,M thẳng hàng

Ta có: AB+BM=AM

AD+DC=AC

mà AB=AD và BM=DC

nên AM=AC

=>A nằm trên đường trung trực của MC(1)

Ta có: EM=EC

=>E nằm trên đường trung trực của MC(2)

Từ (1) và (2) suy ra AE là đường trung trực của MC

=>AE\(\perp\)MC

mà AE\(\perp\)BD

nên BD//MC

23 tháng 12 2023

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

b: ta có: ΔABE=ΔADE

=>EB=ED

=>E nằm trên đường trung trực của BD(1)

ta có: AB=AD

=>A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AE là đường trung trực của BD

=>AE\(\perp\)BD tại H và H là trung điểm của BD

c: Xét ΔBEM và ΔDEC có

EB=ED
\(\widehat{BEM}=\widehat{DEC}\)

EM=EC

Do đó: ΔBEM=ΔDEC

=>\(\widehat{EBM}=\widehat{EDC}\)

mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

và \(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)

nên \(\widehat{ABE}+\widehat{MBE}=180^0\)

=>A,B,M thẳng hàng

Ta có: ΔEBM=ΔEDC

=>BM=DC

Xét ΔAMC có \(\dfrac{AB}{BM}=\dfrac{AD}{DC}\)

nên BD//MC

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)