Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng ba góc của một tam giác là 180
vậy góc A=180*2/5 =72 biết \(\frac{1}{2}\)A là 1,E là 2
sau khi biết góc A thì tính góc E; E=180-72=108
Cứ tương tự mà bạn làm tiếp nhé giờ mình phải đi học rồi
Xảy ra 2 trường hợp :a,OB=OC=>góc OBC=gócOCB nên góc ABCbằng góc ACB=>tam giác ABC cân tại A=>AB=AC b,OB khác OCgiả sử OB<OC.Lấy K trên OC sao cho OK=OB.Gọi H là giao điểm cua các tia phân giác các góc OBC,OCB=>tam giác OHB=tam giác OHK(c.g.c)=>góc OBH=góc OKH tam giác OBF=tam giác OKE(c.g.c)=>góc OBF=góc OKE nên góc OHK=góc OKE=.góc HKC=gócEKC tam giácOHK=tam gicOEK(c.g.c)=>góc HOK=góc EOK từ đó có góc BOC =120 độ=>OBC+OCB=60=>ABC+ACB=60.3:2=90=>GÓC bac = 90
a) (thay vô y như toán đại í )
t.g OBC có: O1^+B1^+C1^=180 độ => O1^=180 độ - B^1-C1^
t.g ABC có: A1^+B2^+B^1+C^2+C1^=180 độ
=> A1^+B^2+C^2=180 độ - B^1-C^1=O1^
=> BOC^=BAC^+ABO^+ACO^
b) B2^+C2^=90 độ - A1^:2
=> B2^+C^2= 90 độ - (180 độ - B1^ - B2^ - C1^ - C2^):2
=> B2^+C2^= 90 độ - 90 độ +(B1^+B2^+C2^+C1^):2
=> B2^+C2^=B2+(C1^+C2^):2 ( vì BO là tia p.g của ABC^)
=> C2^=(C1^+C2^):2 => CO là tia p/g của ACB^
a) Ta có: + \(\widehat{BOC}\)là góc ngoài của tam giác OBK
=> \(\widehat{BOC}=\widehat{OBK}+\widehat{OKB}\) (1)
+ \(\widehat{OKB}\)là góc ngoài của tam giác AKC
=>\(\widehat{OKB}=\widehat{A}+\widehat{ACK}\)(2)
Từ (1)(2) =>\(\widehat{BOC}=\widehat{OBK}+\widehat{A}+\widehat{ACK}\)
hay\(\widehat{BOC}=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)
b) Ta có:\(\widehat{ABO}+\widehat{ACO}=90^o-\frac{\widehat{A}}{2}\)
=>\(2\widehat{ABO}+2\widehat{ACO}=180^o-\widehat{A}\)(3)
Xét tam giác ABC có:
\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)( Tổng 3 góc trong 1 tam giác)
=>\(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{A}\)(4)
Từ (3)(4) => \(2\widehat{ABO}+2\widehat{ACO}=\widehat{ABC}+\widehat{ACB}\)(*)
Ta có: BO là tia phân giác của góc ACB
=>\(2\widehat{ABO}=\widehat{ABC}\)(**)
Từ (*)(**) => \(2\widehat{ABO}+2\widehat{ACO}=2\widehat{ABO}+\widehat{ACB}\)
=>\(2\widehat{ACO}=\widehat{ACB}\)
=> CO là tia phân giác của góc ACB
Bài này lm từ đơt đầu năm mà quên mất tiêu r
+) Trên tia đổi của AB lấy AH sao cho AH = AB = \(\frac{1}{2}\) BC
+) Xét Δ AHC vuông tại A và Δ ABC vuông tại A có
AH = AB ( cách vẽ )
AC: cạnh chung
⇒ ΔAHC = Δ ABC ( c-g-c)
⇒ HC = BC ( 2 cạnh tương ứng )
Ta có H thuocj tia đối của tia AB
=> HA + AB = HB (1)
Mà AH = AB = \(\frac{1}{2}\) BC ( cách vẽ )
=> 2 AH = 2 AB = BC (2)
=> 2AH = 2 HB = AB = BC
+) Xét ΔABH có \(\hept{\begin{cases}HB=BC\\HC=BC\end{cases}}\)
=> ΔABH đều
=> \(\widehat{B}=60^o\) ( tính chất tam giác đều )