K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

bạn tự vẽ hình

a, xét tam giác ABM và tam giác ACM có :

AB=AC (gt)

MB=MC (gt)

AM là cạch chung

suy ra tam giác ABM =tam giác ACN (c.c.c)

b, Vì tam giác ABM = tam giác ACN (câu a)

suy ra góc M1= góc M2 (2 góc tương ứng)

mà M1+M2=180 ( 2 góc kề bù)

suy ra : M1=M2= 90 

suy ra AM vuông góc BC

c, Vì tam giác ABM = tam giác ACM (câu a)

suy ra : A1=A2 ( 2 góc tương ứng)

suy ra: AM là phân giác góc BAC

9 tháng 12 2016

bn vẽ hình giùm mik nha

a) xét tam giác ABM và tam giác ACM có:

AM cạnh chung

BM=MC(M trđ BC)

AB=AC(gt)

Nên tam giác ABM = tam giác ACM(ccc)

b) Từ c/m a có: tam giác ABM=tam giác ACM => góc AMB = góc AMC mà AMB+AMC=180 độ(kề bù)

hay 2.AMB=180 độ => AMB=90 độ => AM vuông BC

c) Có tam giác ABM = tam giác ACM => BAM=CAM kết hợp AM nằm giữa AB và AC => AM p/g BAC

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

8 tháng 12 2021

A B C M

\(a,\) Xét \(\Delta ABM\) và \(\Delta ACM\) có:

\(AB=AC\) (giả thiết)

\(AM\) là cạnh chung

\(BM=CM\) (giả thiết)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(b,\) Vì \(\Delta ABM=\Delta ACM\) (chứng minh câu \(a\))

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (\(2\) góc tương ứng)

\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)

\(c,\) Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)

Mà \(AM\) là tia phân giác \(\widehat{BAC}\) (chứng minh câu \(b\))

\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)

\(\Rightarrow AM\perp BC\) tại \(M\)

a: Xét ΔABM và ΔACM có

AB=AC

góc BAM=góc CAM

AM chung

=>ΔABM=ΔACM

b: ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

c: ΔABM=ΔACM

=>góc AMB=góc AMC=180/2=90 độ

=>AM vuông góc BC

d: ΔABM=ΔACM

=>BM=CM

=>Mlà trung điểm của BC

31 tháng 12 2023

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

b: Xét ΔMAB vuông tại M và ΔMDC vuông tại M có

MB=MC

\(\widehat{MBA}=\widehat{MCD}\)(hai góc so le trong, AB//CD)

Do đó: ΔMAB=ΔMDC

Ta có: \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

\(\widehat{ABC}=\widehat{DCB}\)(hai góc so le trong, AB//CD)

Do đó: \(\widehat{ACB}=\widehat{DCB}\)

=>CB là phân giác của góc ACD

 

30 tháng 12 2021

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

28 tháng 2 2021

a) xét ΔABM và ΔACM có

góc B = góc C 

AB = AC ( ΔABC cân tại A )

BM=CM ( tính chất các đường của Δ cân từ đỉnh )

=> ΔABM = ΔACM  

b) xét ΔBME và ΔCMF có

góc B bằng góc C 

BM=CM

=> ΔBME=ΔCMF ( cạnh huyền góc nhọn )

=> FM = EM 

=> ΔEMF cân tại M

c) gọi giao của EF và AM là O 

ta có BE = CF => AE=AF

=> ΔAEF cân tại A 

ta có AM là tia phân giác của góc A 

mà O nằm trên AM suy ra AO cũng là tia phân giác của góc A 

ta lại có ΔAEF cân tại A 

suy ra AO vuông góc với EF

suy ra AM vuông góc với EF

xét ΔAEF và ΔABC có 

EF và BC đều cùng vuông góc với AM => EF // BC 

 

 

a) Xét ΔABM và ΔACM có 

AB=AC(ΔABC cân tại A)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

b) Xét ΔEMB vuông tại E và ΔFMC vuông tại F có 

BM=CM(M là trung điểm của BC)

\(\widehat{EBM}=\widehat{FCM}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔEMB=ΔFMC(Cạnh huyền-góc nhọn)

Suy ra: ME=MF(hai cạnh tương ứng)

Xét ΔEMF có ME=MF(cmt)

nên ΔEMF cân tại M(Định nghĩa tam giác cân)