Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo hệ thức lượng trong tam giác vuông AMB ta có
\(cos\alpha=\frac{MA}{AB}\Leftrightarrow MA=2a.cos\alpha\)
\(sin\alpha=\frac{MB}{AB}\Rightarrow MB=2a.sin\alpha\)
Vì \(\hept{\begin{cases}MH\perp d\\AB\perp d\end{cases}\Rightarrow MH//AB}\)
=> MH=KB
mà \(KB=AB-AK=2a-MA.cos\alpha=2a-2a.cos^2\alpha\)
đề bài : Cho tam giác MAB vuông tại H ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng
đúng hog
a) \(\Delta ABM\) nội tiếp đường tròn (O) có bán kính AB
=> \(\Delta ABM\) vuông tại M
b) Xét \(\Delta ABM\) vuông tại M, đường cao MH
=> \(AB^2+BH^2=25\)
=> AB =5
Ta có: MH .BC = MA.MB
=> MH =2,4
c) \(\Delta AMC\) vuông tại M, MN là tiếp tuyến
=> MN = NA= NC =AC/2
Xét \(\Delta OAN\) và \(\Delta OMN\) có:
OA =OH =R
ON chung
NA = NM
=> \(\Delta OAN=\Delta OMN\)
=> \(\widehat{OAN}=\widehat{OMN}=90^o\)
=> MN \(\perp\) OM
mà M thuộc (O)
=> MN là tiếp tuyến của (O)
d) Ta có: ON là tia phân giác \(\widehat{AOM}\)
OD là phân giác góc BOM
\(\widehat{AOM}=\widehat{BOM}\) (kề bù)
=> ON\(\perp\)OD
Xét \(\Delta NOD\) vuông tại O, đường cao OM
\(OM^2=NA.DB=>R^2=NA.DB\) (đpcm)
1: Xét (O) có
MA,MB là các tiếp tuyến
Do đó:MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
2: Ta có: ΔOAM vuông tại A
=>\(AO^2+AM^2=OM^2\)
=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)
Xét ΔAMO vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\)
=>\(MH\cdot MO=3R^2\)
3:
Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)
nên \(\widehat{AMO}=30^0\)
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MO là phân giác của góc AMB
=>\(\widehat{AMB}=2\cdot\widehat{AMO}=2\cdot30^0=60^0\)
Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)
nên ΔMAB đều
4: Xét (O) có
\(\widehat{MAI}\) là góc tạo bởi tiếp tuyến AM và dây cung AI
\(\widehat{IKA}\) là góc nội tiếp chắn cung AI
Do đó: \(\widehat{MAI}=\widehat{IKA}\)
Xét ΔMAI và ΔMKA có
\(\widehat{MAI}=\widehat{MKA}\)
\(\widehat{AMI}\) chung
Do đó: ΔMAI đồng dạng với ΔMKA
=>\(\dfrac{MA}{MK}=\dfrac{MI}{MA}\)
=>\(MA^2=MI\cdot MK\)
mà \(MA^2=MH\cdot MO\)
nên \(MI\cdot MK=MH\cdot MO\)
Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{OAM}=90^0\)
\(\widehat{HAI}+\widehat{OIA}=90^0\)(ΔAHI vuông tại H)
mà \(\widehat{OAI}=\widehat{OIA}\)(ΔOAI cân tại O)
nên \(\widehat{MAI}=\widehat{HAI}\)
=>AI là phân giác của góc MAH
a: Xét (O) có
ΔABC nội tiếp
AB là đường kính
Do dó: ΔABC vuông tại C
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
Xét ΔMAB có
AC,BD là các đường cao
AC cắt BD tại H
Do đó: H là trực tâm
=>MH vuông góc vơi AB
b: Xét hình thang ABQP có
O là trung điểm của AB
ON//AP//BQ
Do đó: N là trung điểm của PQ
ΔOCD cân tại O
mà ON là đường cao
nên N là trung điểm của CD
ND+DP=NP
NC+CQ=NQ
mà ND=NC; NP=NQ
nên DP=CQ