K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Theo hệ thức lượng trong tam giác vuông AMB ta có 

\(cos\alpha=\frac{MA}{AB}\Leftrightarrow MA=2a.cos\alpha\)

\(sin\alpha=\frac{MB}{AB}\Rightarrow MB=2a.sin\alpha\)

Vì \(\hept{\begin{cases}MH\perp d\\AB\perp d\end{cases}\Rightarrow MH//AB}\)

=> MH=KB

mà \(KB=AB-AK=2a-MA.cos\alpha=2a-2a.cos^2\alpha\)

5 tháng 3 2022

đề bài : Cho tam giác MAB vuông tại H ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng

đúng hog

5 tháng 3 2022

Vuông tại M nha

6 tháng 1 2021

a) \(\Delta ABM\) nội tiếp đường tròn (O) có bán kính AB

=> \(\Delta ABM\) vuông tại M

b) Xét \(\Delta ABM\) vuông tại M, đường cao MH

=> \(AB^2+BH^2=25\)

=> AB =5

Ta có: MH .BC = MA.MB

=> MH =2,4

c) \(\Delta AMC\) vuông tại M, MN là tiếp tuyến 

=> MN = NA= NC =AC/2

Xét \(\Delta OAN\) và \(\Delta OMN\) có:

OA =OH =R

ON chung

NA  = NM

=> \(\Delta OAN=\Delta OMN\)

=> \(\widehat{OAN}=\widehat{OMN}=90^o\)

=> MN \(\perp\) OM

mà M thuộc (O)

=> MN là tiếp tuyến của (O)

d) Ta có: ON là tia phân giác \(\widehat{AOM}\)

OD là phân giác góc BOM

\(\widehat{AOM}=\widehat{BOM}\) (kề bù)

=> ON\(\perp\)OD

Xét \(\Delta NOD\) vuông tại O, đường cao OM

\(OM^2=NA.DB=>R^2=NA.DB\) (đpcm)

 

 

 

 

 

14 tháng 12 2023

1: Xét (O) có

MA,MB là các tiếp tuyến

Do đó:MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

2: Ta có: ΔOAM vuông tại A

=>\(AO^2+AM^2=OM^2\)

=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)

Xét ΔAMO vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\)

=>\(MH\cdot MO=3R^2\)

3:

Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AMO}=30^0\)

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}=2\cdot30^0=60^0\)

Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

4: Xét (O) có

\(\widehat{MAI}\) là góc tạo bởi tiếp tuyến AM và dây cung AI

\(\widehat{IKA}\) là góc nội tiếp chắn cung AI

Do đó: \(\widehat{MAI}=\widehat{IKA}\)

Xét ΔMAI và ΔMKA có

\(\widehat{MAI}=\widehat{MKA}\)

\(\widehat{AMI}\) chung

Do đó: ΔMAI đồng dạng với ΔMKA

=>\(\dfrac{MA}{MK}=\dfrac{MI}{MA}\)

=>\(MA^2=MI\cdot MK\)

mà \(MA^2=MH\cdot MO\)

nên \(MI\cdot MK=MH\cdot MO\)

Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{OAM}=90^0\)

\(\widehat{HAI}+\widehat{OIA}=90^0\)(ΔAHI vuông tại H)

mà \(\widehat{OAI}=\widehat{OIA}\)(ΔOAI cân tại O)

nên \(\widehat{MAI}=\widehat{HAI}\)

=>AI là phân giác của góc MAH

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do dó: ΔABC vuông tại C

Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

Xét ΔMAB có

AC,BD là các đường cao

AC cắt BD tại H

Do đó: H là trực tâm

=>MH vuông góc vơi AB

b: Xét hình thang ABQP có

O là trung điểm của AB

ON//AP//BQ

Do đó: N là trung điểm của PQ

ΔOCD cân tại O

mà ON là đường cao

nên N là trung điểm của CD

ND+DP=NP

NC+CQ=NQ

mà ND=NC; NP=NQ

nên DP=CQ