Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\widehat{CBH}=\widehat{DAC}\) (cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBC}=\widehat{KAC}\) (cùng chắn cung KC)
Suy ra \(\widehat{KBC}=\widehat{CBH}\).
Xét tam giác BHK có \(\widehat{BCK}=\widehat{BCH},BD\perp HK\)
Vậy tam giác BHK cân tại B và BC là trung trực của HK.
b) Vì AM là đường kính nên \(\widehat{ACM}=90^o\).
\(\widehat{ABC}=\widehat{AMC}\) (cùng chắn cung AC)
Xét hai tam giác ABD và AMC có:
\(\left\{{}\begin{matrix}\widehat{D}=\widehat{C}=90^o\\\widehat{ABD}=\widehat{AMC}\end{matrix}\right.\) Vậy tam giác ABD đồng dạng với tam giác AMC (g.g).
Ta có từ giác BFEC nội tiếp ( vì có góc BFC = BEC = 90 độ).
Suy ra góc ABC = AEF => góc AEF = góc AMC.
Mà \(\widehat{AMC}+\widehat{CAM}=90^o\Rightarrow\widehat{AEF}+\widehat{CAM}=90^o\\ \Rightarrow AO\perp EF.\)
d) Xét hai tam giác AEQ và AMC đồng dạng ta sẽ có được AQ.AM = AE.AC.
1: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
2: Xét ΔKBF và ΔKEC có
góc KBF=góc KEC
góc K chung
=>ΔKBF đồng dạng với ΔKEC
=>KB/KE=KF/KC
=>KB*KC=KE*KF
a: Xét tứ giác CGFB có \(\widehat{CGB}=\widehat{CFB}=90^0\)
nên CGFB là tứ giác nội tiếp
b: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>AC\(\perp\)CD
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>AB\(\perp\)BD
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{ADC}\)
Xét ΔACD vuông tại C và ΔCFB vuông tại F có
\(\widehat{ADC}=\widehat{CBF}\)
Do đó: ΔACD~ΔCFB
c: ta có: BH\(\perp\)AC
CD\(\perp\)AC
Do đó: BH//CD
Ta có: CH\(\perp\)AB
BD\(\perp\)BA
Do đó: CH//BD
Ta có: ΔOBC cân tại O
mà OI là đường cao
nên I là trung điểm của BC
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
d: ta có: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HD
=>H,I,D thẳng hàng
a: Xét tứ giác BDHF có
góc BDH+góc BFH=180 độ
=>BDHF là tứ giác nội tiếp
b: Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
c: Xét ΔHAF vuông tại F và ΔHCD vuông tại D có
góc AHF=góc CHD
=>ΔHAF đồng đạng với ΔHCD
=>HA/HC=HF/HD
=>HA*HD=HF*HC
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng vơi ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE=HA*HD
d: Xét ΔAEF và ΔABC có
góc AEF=góc ABC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC