Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Do tam giác ABC cân tại A, có AM là trung tuyến nên đồng thời là đường cao, hay \(\widehat{AMB}=90^o\)
Hai tam giác vuông ADB và AMB có chung cạnh huyền AB nên tứ giác ABMD nội tiếp đường tròn đường kính AB.
+) Xét tam giác BMD có N và I lần lượt là trung điểm của BM và BD nên NI là đường trung bình của tam giác. Vậy nên NI // MD. Suy ra \(\widehat{KNC}=\widehat{DMC}\) (Hai góc đồng vị)
Mà do tứ giác ABMD nội tiếp nên \(\widehat{DAB}=\widehat{DMC}\) nên \(\widehat{KNC}=\widehat{DAB}\)
Vậy thì tứ giác ABNK nội tiếp.
+) Xét tam giác CKN có MD // NK nên áp dụng định lý Ta let ta có:
\(\frac{DC}{CK}=\frac{MC}{CN}=\frac{2}{3}\)
Xét tam giác MDC và ABC có: góc C chung, \(\widehat{CAB}=\widehat{CMD}\) nên \(\Delta ABC\sim\Delta MDC\left(g-g\right)\)
\(\Rightarrow\frac{DC}{BC}=\frac{MC}{AC}\Rightarrow DC.AC=BC.MC\)
\(\Rightarrow\frac{2}{3}AC.CK=\frac{1}{2}BC^2\Rightarrow4AC.CK=3BC^2\)
xét tam giác ABC cân tại A
có AM là trung tuyến
=> AM là đg cao
ta có góc AMB =90 độ
ADB=90 độ(BD vg góc AC)
=>Tứ giác ABMD nội tiếp
xét tam giác BDM có N,I lần lượt là trg điểm MB,BD
=> NI là đtb tam giác BMD
=>IN//DM=> góc INM= DMC
=> góc DMC =BAK
ta có gócINM=BAK cùng= DMC
=> tứ giác ABNK nội tiếp
b) xét tam giác CNK, CAB có NCK chung
góc CNK= BAC(cmt)
=> 2 tam giác CNK, CAB đồng dạng(g.g)
=> CK/cb= CN/AC
=> AC.CK=BC.CN
mà CN=MN+MC= BC/4+BC/2=3BC/4
nên AC.CK=3.BC^2/4=> BC^2= 4/3AC.CK
a) xét tam giác ABC cân tại A
AM là đường trung tuyến => AM là đường cao
ta có : AMB = 90 độ
ADB = 90 độ ( BD vuông góc với AC)
=> tứ giác ABMD nội tiếp đường tròn
xét tam giác BDM có lần lượt N, I là trung điểm của MB và BD
=> NI là đường trung bình của tam giác BDM
=> IN//DM
=> +INM = DMC
+ DMC = BAK
=> INM = BAK
=> tứ giác nội tiếp.
b) xét tam giác CNK, CAB có NCK chung
góc CNK = BAC
=> tam giác CNK đồng dạng với tam giác CAB
=> CK/CB=CN/AC
=> AC.CK=BC.CN
mà CN = MN+MC= BC/4 + BC/2=3BC/4
nên AC.CK=3BC^2/4=> BC2=34CA.CK
a: góc ADB=1/2*180=90 độ
góc EDF+góc EHF=180 độ
=>EDFH nội tiếp
b: gócBAE+góc CAE=90 độ
góc BEA+góc HAE=90 độ
mà góc CAE=góc HAE
nên góc BEA=góc BAE
=>ΔBAE cân tại B
1: Xét tứ giác BCDE có \(\widehat{BDC}=\widehat{BEC}=90^0\)
nên BCDE là tứ giác nội tiếp
2: Xét ΔKEB vuông tại E và ΔKDC vuông tại D có
góc EKB=góc DKC
Do đó: ΔEKB\(\sim\)ΔDKC
Suy ra: KE/KD=KB/KC
hay \(KE\cdot KC=KB\cdot KD\)