K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2021

Hỏi đáp Toán

a)a)

Xét hai tam giác vuông ΔMHB và ΔNKC có:

BM=CN(gt)

ˆHBM=ˆKCN

Vậy ΔMHBΔ == ΔNKC (cạnh huyền - góc nhọn)

b)

Từ câu a), ta có: BH=CK mà AB=AC⇒AH=AK

c)

Ta có MH=MK⇒ΔAHM=ΔAKN(c−g−c)⇒AM=AN hay ΔAMN cân

3 tháng 3 2021

ai giúp mình vs ạ

 

3 tháng 9 2017

2 tháng 2 2019

A B C M N 1 2 2 1 E F 1 1 2 2 O

CM : a) Ta có: t/giác ABC cân tại A

=> góc B2 = góc C2

Mà góc B1 + góc B2 = 1800

       góc C1 + góc C2 = 1800

=> góc B1 = góc C1

Xét t/giác AMB và t/giác ANC

có AB = AC (gt)

  góc B1 = góc C1 (cmt)

  MB = NC (gt)

=> t/giác AMB = t/giác ANC (c.g.c)

=> AM = AN (hai cạnh tương ứng)

=> t/giác AMN là t/giác cân tại A

b) Ta có: t/giác AMN cân tại A

=> góc M = góc N

Xét t/giác BME và t/giác CNF 

có góc E1 = góc F1 = 900 (gt)

  BM = CN (gt)

  góc M = góc N (cmt)

=> t/giác BME = t/giác CNF (cạnh huyền - góc nhọn)

c,d) tự làm

11 tháng 2 2018

câu a ta có : <MAE = 90

suy ra tam giác MAE là tam giác vuông :< AME + <MEA = 90 ĐỘ ( đ/lí tổng 3 góc áp dụng vào tam giác vuông )

gọi n là giao điểm của EH và CD

vì <MND =90 độ suy ra <NMD +<MPN=90độ

vì cùng phụ nhau với < m suy ra <MEA =<MDN

xét tam giác ACD và tam giác AME :

AD =AE (GT)

<MEA=<MDN (cmt)

<CAD =<MAE =90độ (do AC vuông góc với MB )

SUY RA TAM GIÁC ACD = TAM GIÁC AME(G.C.G)

:A

8 tháng 8 2019

bài này k cần vẽ hình ak bạn

11 tháng 3 2017

Các bạn giúp mình nhé 

a: Xét ΔMHB vuông tại H và ΔNKC vuông tại K có

BM=CN

\(\widehat{B}=\widehat{C}\)

Do đó: ΔMHB=ΔNKC

b: Ta có: ΔMHB=ΔNKC

nên HB=KC

Ta có: AH+HB=AB

AK+KC=AC

mà BA=AC

và HB=KC

nên AH=AK

c: Xét ΔAHM vuông tại H và ΔAKN vuông tại K có

AH=AK

HM=KN

Do đó: ΔAHM=ΔAKN

Suy ra: AM=AN

3 tháng 4 2020

Hình tự kẻ nha

a)Xét 2 tam giác vuông ABH và ACH có

 Góc AHB = góc AHC (=90°)

 AB= AC ( tam giác ABC cân tại A)

 Góc ABC = góc ACB (tam giác ABC cân tại A)

=>2 tam giác vuông ABH=ACH (cạnh huyền -góc nhọn)

b)Tam giác ABC cân =>góc ABC=gócACB

=>gócABM=gócACN

Xét 2 tam giác ABM và ACN

AB=AC ( tam giác ABC cân tại A)

Góc ABM=góc ACN (cmt)

BM=CN(gt)

=> tam giác ABM=tam giác ACN

=>AM=AN

Do đó tam giác AMN cân tại A

c) Phần này hình như sai đề

3 tháng 4 2020

A B C M N H E F K 1 2 1 1 2 3 3 2

a) Xét t/giác ABH và t/giác ACH

có: AB = AC (gt)

    \(\widehat{H_1}=\widehat{H_2}=90^0\)(gt)

   \(\widehat{B_1}=\widehat{C_1}\) (gt)

=> t/giác ABH = t/giác ACH (ch - gn)

b) Ta có: \(\widehat{B_1}+\widehat{ABM}=180^0\)(kề bù)

      \(\widehat{C_1}+\widehat{ACN}=180^0\) (kề bù)

Mà \(\widehat{B_1}=\widehat{C_1}\) (gt) => \(\widehat{ABM}=\widehat{ACN}\)

Xét t/giác ABM và t/giác ACN

có AB = AC (gt)

  \(\widehat{ABM}=\widehat{ACN}\) (cmt)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

=> AM = AN (2 cạnh t/ứng)

=> t/giác AMN cân

c) Ta có: t/giác  MEB vuông tại A => \(\widehat{M}+\widehat{B_2}=90^0\)

    t/giác FCN vuông tại F => \(\widehat{C_2}+\widehat{N}=90^0\)
Mà \(\widehat{M}=\widehat{N}\)(Vì t/giác AMN cân tại A) => \(\widehat{B_2}=\widehat{C_2}\) (1)

Ta lại có: \(\widehat{B_2}=\widehat{B_3}\) (Đối đỉnh); \(\widehat{C_2}=\widehat{C_3}\)(đối đỉnh)       (2)

Từ (1) và (2) => \(\widehat{B_3}=\widehat{C_3}\) => t/giác BKC cân tại K

                      có KH là đường cao

  => KH cũng là đường trung trực của cạnh BC (t/c của t/giác cân) (3)

(đoạn này chưa học có thể xét t/giác KBH và t/giác KCH =>  BH = CH => KH là đường trung trực)

t/giác ABH = t/giác ACH (cm câu a) =>  BH = CH 

=> AH là đường trung tuyến

mà AH cũng là đường cao 

=> AH là đường trung trực của cạnh BC (4)

Do A \(\ne\)K (5)

Từ (3); (4); (5) => A, H, K thẳng hàng

8 tháng 1 2018

B C A D E M N I H K

a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)

Xét tam giác vuông BDM và CEN có:

BD = CE

\(\widehat{ECN}=\widehat{DBM}\)  (cmt)

\(\Rightarrow\Delta BDM=\Delta CEN\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BM=CN\)   (Hai cạnh tương ứng)

b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)

Ta thấy MD và NE cùng vuông góc BC nên MD // NE 

Suy ra \(\widehat{DMI}=\widehat{ENI}\)   (Hai góc so le trong)

Xét tam giác vuông MDI và NEI có:

MD = NE

\(\widehat{DMI}=\widehat{ENI}\)

\(\Rightarrow\Delta MDI=\Delta NEI\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow MI=NI\)

Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.

c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\)    (1)  và BK = CK

Xét tam giác BMK và CNK có:

BM = CN (cma)

MK = NK (cmb)

BK = CK (cmt)

\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\)   (2)

Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)

Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)

Vậy \(KC\perp AN\)

16 tháng 9 2018

dvdtdhnsrthwsrh