Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác ABC có : BE; CF là trung tuyến và cắt nhau tại I
=> AI là trung tuyến (tc)
mà tam giác ABC cân tại A (Gt)
=> AI là phân giác của góc BAC (đl)
a)Xét\(\Delta ABC\)có:\(BE\)là đg trung tuyến xuất phát từ đỉnh\(B\left(GT\right)\)
\(CF\)là đg trung tuyến xuất phát từ đỉnh\(C\left(GT\right)\)
mà\(BE\)cắt\(CF\)tại\(I\)
\(\Rightarrow AI\)là đg trung tuyến xuất phát từ đỉnh\(A\)(Định lí về tính chất 3 đg trung tuyến của 1\(\Delta\))
mà\(\Delta ABC\)cân tại\(A\left(GT\right)\)
\(\Rightarrow AI\)vừa là đg trung tuyến vừa là đg p/g của\(\Delta ABC\)(Tính chất của tg cân)
b)Xét\(\Delta ABI\)và\(\Delta ACI\)có:
\(AI\)là cạnh chung
\(\widehat{BAI}=\widehat{CAI}\)(\(AI\)là tia p/g của\(\widehat{BAC}\))
\(AB=AC\)(\(\Delta ABC\)cân tại\(A\))
Do đó:\(\Delta ABI=\Delta ACI\left(c-g-c\right)\)
\(\Rightarrow\widehat{ABI}=\widehat{ACI}\)(2 cạnh t/ứ)
\(BI=CI\)(2 cạnh t/ứ)
Xét\(\Delta ABE\)và\(\Delta ACF\)có:
\(\widehat{ABE}=\widehat{ACF}\left(cmt\right)\)
\(AB=AC\)(\(\Delta ABC\)cân tại\(A\))
\(\widehat{BAC}\)là góc chungDo đó:\(\Delta ABE=\Delta ACF\left(g-c-g\right)\)\(\Rightarrow BE=CF\)(2 cạnh t/ứ)Xét\(\Delta IBC\)có:\(IB=IC\left(cmt\right)\)Do đó:\(\Delta IBC\)cân tại\(I\)(Định nghĩa\(\Delta\)cân)c)Gọi\(M\)là giao điểm của\(AI\)và\(BC\),\(H\)là đg cao xuất phát từ đỉnh\(P\)của\(\Delta ABP\)Xét\(\Delta ABC\)có:\(AM\)là tia p/g của\(\widehat{BAC}\))mà\(\Delta ABC\)cân tại\(A\left(GT\right)\)\(\Rightarrow AM\)là đg trung trực của\(BC\)(Tính chất về tg cân)\(\Rightarrow AM\perp BC\)hay\(AP\perp BM\)Xét\(\Delta ABP\)có:\(BM\)là đg cao xuất phát từ đỉnh\(B\left(cmt\right)\)\(PH\)là đg cao xuất phát từ đỉnh\(P\left(GT\right)\)mà\(BM\)cắt\(PH\)tại\(K\)\(\Rightarrow AK\)là đg cao thứ 3 của\(\Delta ABP\)hay\(AK\perp BP\)I là trung điểm của EF nên IE = IF = EF/2 = 5cm.
Ta có : ⇒ ΔDIE vuông tại I
Theo định lý Pitago trong tam giác vuông DIE ta có :
DE2 = DI2 + EI2 ⇒ DI2 = DE2 – EI2 = 132 – 52 = 144 ⇒ DI = 12 (cm).