K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...

14 tháng 2 2020

bạn vẽ hình ra đi

14 tháng 2 2020

ABCNM

a ) Xét tam giác AMB và tam giác NMC có :

AM = MN ( gt )
Góc AMB = góc NMC ( đối đỉnh )

BM = MC ( vì AM là đường trung tuyến của BC )

=> Tam giác AMB = Tam giác NMC ( c.g.c )

=> Góc ABM = góc NCM ( 2 góc tương ứng )

Mà góc ABM = góc NCM so le trong 

=> CN // AB 

b ) Xét tam giác ABC và tam giác NCB có :

AB = NC ( tam giác AMB = tam giác NMC mà cạnh AB và NC là 2 cạnh tương ứng )

Góc ABC = góc NCB ( vì tam giác AMB = tam giác NMC mà góc ABC và góc NCB là 2 góc tương ứng )

AB là cạnh chung 

=> Tam giác ABC = Tam giác NCB ( c.g.c )

13 tháng 2 2016

Mình cũng cần này *.*

5 tháng 2 2017

A B C M N

a) Xét tam giác AMB và tam giác NMC có:

AM=MN (gt)

Góc AMB=góc NMC (đối đỉnh)

BM=MC(vì AM là đường trung tuyến của BC)

=> Tam giác AMB = tam giác NMC (c.g.c) => góc ABM=góc NCM ( 2 góc tương ứng )

mà góc ABM và góc NCM so le trong => CN//AB

b) Xét tam giác ABC và tam giác NCB có:

AB=NC (\(\Delta AMB=\Delta NMC\) mà cạnh AB và NC là 2 cạnh tương ứng)

Góc ABC = góc NCB ( \(\Delta AMB=\Delta NMC\) mà góc ABC và góc NCB là 2 góc tương ứng)

AB là cạnh chung

=> Tam giác ABC và tam giác NCB (c.g.c)

c) bạn tham khảo câu trả lời của mình ở đây: https://olm.vn/hoi-dap/question/827711.html