K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2016

b. Ta co goc EMD + goc EMH =90 mà DEM = HEM nen EMD = EMH. Xet 2 tam giac DEM va HEM có EH canh chung, goc EMH =EMD, DEM=HEM

C. EF=EK suy ra tam giac EFK can tai E. EM la tia phan giác, cung là đường cao, ta lại có ED vuong góc voi EK. Suy ra M là trực tâm. Mà MH vuong goc EF. Suy ra KMH thang hang

 

 

 

28 tháng 4 2019

a, Xét 2 tam giác vuông DEM và HEM có:

             ME cạnh chung

            \(\widehat{DEM}\)=\(\widehat{HEM}\)(gt)

=> tam giác DEM=tam giác HEM(CH-GN)

b, vì tam giác DEM=tam giác HEM(câu a) suy ra MD=MH(2 cạnh tương ứng)

c, trong tam giác FKE có: FD,KH là 2 đường cao cắt nhau tại M

=> K,M,H thẳng hàng

D E F M H K

Câu C của bạn làm đúng ko vậy

16 tháng 5 2022

câu a bị lx

16 tháng 5 2022

lên nhanh thế cj

 

a: Xét ΔDEM vuông tại E và ΔDHM vuông tại H có

DM chung

góc EDM=góc HDM

=>ΔDEM=ΔDHM

b: Xét ΔMEK vuông tại E và ΔMHF vuông tại H có

ME=MH

góc EMK=góc HMF

=>ΔMEK=ΔMHF

=>MK=MF

=>ΔMKF cân tại M

c: KM+ME=EM+MF=EF<KF

30 tháng 4 2019

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)

a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có

EC chung

\(\widehat{DEC}=\widehat{HEC}\)

Do đó; ΔEDC=ΔEHC

b: Xét ΔDCK vuông tại D vàΔHCF vuông tại H có 

CD=CH

\(\widehat{DCK}=\widehat{HCF}\)

Do đó; ΔDCK=ΔHCF

Suy ra: CK=CF

15 tháng 5 2022

a, Xét Δ DCE và Δ HCE, có :

EC là cạnh chung

\(\widehat{CDE}=\widehat{CHE}=90^o\)

\(\widehat{DEC}=\widehat{HEC}\) (EC là tia phân giác \(\widehat{DEH}\))

=> Δ DCE = Δ HCE (g.c.g)

=> DC = HC

b, Xét Δ DCK và Δ HCF, có :

DC = HC (cmt)

\(\widehat{DCK}=\widehat{HCF}\) (đối đỉnh)

=> Δ DCK = Δ HCF ( ch - cgn)

=> CK = CF

=> Δ CKF cân tại C

4 tháng 1 2021

help me

a) Xét ΔDEF có DE=DF(gt)

nên ΔDEF cân tại D(Định nghĩa tam giác cân)

\(\widehat{DEF}=\widehat{DFE}\)(hai góc ở đáy)

hay \(\widehat{MEF}=\widehat{NFE}\)

Ta có: DM+ME=DE(M nằm giữa D và E)

DN+NF=DF(N nằm giữa D và F)

mà DM=DN(gt)

và DE=DF(gt)

nên ME=NF

Xét ΔMEF và ΔNFE có 

ME=NF(cmt)

\(\widehat{MEF}=\widehat{NFE}\)(cmt)

EF chung

Do đó: ΔMEF=ΔNFE(c-g-c)

⇒FM=EN(hai cạnh tương ứng)