Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(DF=\sqrt{EF^2-DE^2}=24\left(cm\right)\left(DF>0\right)\)
\(DH=\dfrac{ED\cdot FD}{EF}=6,72\left(cm\right)\)
\(EH=\dfrac{ED^2}{EF}=\dfrac{49}{25}\left(cm\right)\)
\(HF=EF-EH=\dfrac{576}{25}\left(cm\right)\)
b)
\(MH=\dfrac{DH\cdot EH}{ED}=1,9\left(cm\right)\)
\(S_{MDN}=\dfrac{1}{2}S_{MDNH}=S_{MDH}=6,45\cdot1,9\cdot\dfrac{1}{2}=6,13\left(cm^2\right)\)
\(\Rightarrow S_{EMNF}=S_{ABC}-S_{MDN}=84-6,13=77,87\left(cm^2\right)\)
a) đương nhiên ( áp dụng hệ thức lượng trong tam giác vuông )
b) \(\text{EF}=\sqrt{DE^2+DF^2}=\sqrt{12^2+16^2}=20\) (cm )
ta có DE^2 = EH . EF => EH = DE^2/ EF = 12^2 / 20 = 7.2 ( cm )
DH = DE.DF / EF = 9,6 ( cm )
a: Xét ΔDEF vuông tại D có DH là đường cao
nên DH^2=EH*FH
=>DH=4,8cm
Xét ΔDEF vuông tại D có DH là đường cao
nên ED^2=EH*EF và FD^2=FH*FE
=>ED^2=36 và FD=64
=>ED=6cm; FD=8cm
b: DK=DF/2=4cm
Xét ΔDKE vuông tại D có tan DEK=DK/DE=4/6=2/3
nên \(\widehat{DEK}\simeq34^0\)
c: ΔDEF vuông tại D có DH là đường cao
nên EH*EF=ED^2
ΔDKE vuông tại D có DM là đường cao
nên EM*EK=ED^2
=>EH*EF=EM*EK
=>EH/EK=EM/EF
Xét ΔEHM và ΔEKF có
EH/EK=EM/EF
góc HEM chung
Do đó: ΔEHM đồng dạng với ΔEKF
=>góc EHM=góc EKF
=>góc FHM+góc FKM=180 độ
=>FKMH nội tiếp
=>góc MKH=góc MFH
a) \(EF=\sqrt{3^2+4^2}=5\)(cm)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{3\cdot4}{5}=\dfrac{12}{5}=2,4\left(cm\right)\)
b) \(EF=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cm\right)\)
c) \(EF=\sqrt{12^2+5^2}=13\left(cm\right)\)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)
Các hệ thức về cạnh và đường cao là:
\(DE^2=EH\cdot EF\); \(DF^2=FH\cdot FE\)
\(DH^2=HE\cdot HF\)
\(DH\cdot FE=DE\cdot DF\)
\(\dfrac{1}{DH^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)
Xét tam giác DEF vuông tại D, đường cao DH
* Áp dụng hệ thức : \(DE^2=EH.EF\Rightarrow EF=\dfrac{36}{3,6}=10\)cm
-> HF = EF - EH = 10 - 3,6 = 6,4 cm
* Áp dụng hệ thức : \(DF^2=HF.EF=6,4.10=64\Rightarrow DF=8\)cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:
\(DE^2=EH\cdot EF\)
\(\Leftrightarrow EF=\dfrac{36}{3.6}=10\left(cm\right)\)
Ta có: FH+EH=FE(H nằm giữa F và E)
nên FH=10-3,6=6,4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF, ta được:
\(DF^2=FH\cdot FE\)
\(\Leftrightarrow DF^2=64\)
hay DF=8(cm)