Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)
\(\Delta ABC\) vuông tại \(A\Rightarrow\widehat{A}=90^0\)
\(\Delta ABC\) có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow90^0+60^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)
\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)
\(\Delta AHB\) có \(\widehat{HAB}+\widehat{B}+\widehat{AHB}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow\widehat{HAB}+60^0+90^0=180^0\)
\(\Rightarrow\widehat{HAB}=180^0-\left(60^0+90^0\right)=30^0\)
Vậy \(\widehat{HAB}=30^0\)
\(a.\)
\(\Delta ABC\) vuông tại \(A\Rightarrow\widehat{A}=90^0\)
\(\Delta ABC\) có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow90^0+60^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)
\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)
\(\Delta AHB\) có : \(\widehat{AHB}+\widehat{B}+\widehat{HAB}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow90^0+60^0+\widehat{HAB}=180^0\)
\(\Rightarrow\widehat{HAB}=180^0-\left(90^0+60^0\right)=30^0\)
Vậy : \(\widehat{HAB}=30^0\)
a: Xét tứ giác EHK và ΔIHD có
HE=HI
\(\widehat{EHK}=\widehat{IHD}\)
HK=HD
Do đó: ΔEHK=ΔIHD
b: Xét tứ giác KEDI có
H là trung điểm của DK
H là trung điểm của EI
Do đó: KEDI là hình bình hành
Suy ra: EK//DI
Vì M là trung điểm của EF => ME = MF
Xét △MDE và △MIF
Có : ME = MF (gt)
DME = FMI (2 góc đối đỉnh)
MD = MI (gt)
=> △MDE = △MIF (c.g.c)
=> DE = IF (2 cạnh tương ứng)
Và DEM = MFI (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> DE // IF (dhnb)
b, Vì △MDE = △MIF (cmt)
=> DE = IF (2 cạnh tương ứng)
Xét △HDE vuông tại H và △HGE vuông tại H
Có: HD = HG (gt)
HE : cạnh chung
=> △HDE = △HGE (cgv)
=> DE = GE (2 cạnh tương ứng)
Mà DE = IF (cmt)
=> EG = IF (đpcm)