Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co \(MP=MB.\sin\widehat{B},MQ=MC.\sin\widehat{C}\)
=> \(MP+MQ=\left(MB+MC\right).\sin\widehat{B}=BC.\sin\widehat{B}=const\)
Ta thấy M,P lần lượt là trung điểm của AB,BC => MP là đường trung bình trong \(\Delta\)ABC
=> MP // AC hay MP // AD. Xét \(\Delta\)BAD có: M là trung điểm AB, MP // AD => MP đi qua trung điểm BD
Gọi MP cắt BD tại S. Khi đó S là trung điểm BD. Ta sẽ chứng minh AI đi qua S, thật vậy:
Áp dụng hệ quả ĐL Thales có: \(\frac{ON}{AM}=\frac{OP}{BM}\left(=\frac{CO}{CM}\right)\)=> ON = OP (Vì AM = BM)
Áp dụng ĐL Melelaus cho \(\Delta\)PCN và 3 điểm A,O,I có \(\frac{IP}{IC}.\frac{ON}{OP}.\frac{AC}{AN}=1\)
Thay \(\frac{ON}{OP}=1,\frac{AC}{AN}=2\), ta được \(\frac{IP}{IC}=\frac{1}{2}\). Do đó \(\frac{IC}{IB}=\frac{1}{2}\)(Vì PC=1/2BC)
Áp dụng ĐL Melelaus cho \(\Delta\)ABC và 3 điểm M,I,D có \(\frac{MA}{MB}.\frac{IC}{IB}.\frac{DA}{DC}=1\)
Thay \(\frac{MA}{MB}=1,\frac{IC}{IB}=\frac{1}{2}\)(cmt), ta được \(\frac{DA}{DC}=2\)=> C là trung điểm AD
Xét \(\Delta\)BAD: Các trung tuyến DM, BC cắt nhau tại I => I là trọng tâm của \(\Delta\)BAD
Ta có S là trung điểm BD nên AI đi qua S. Như vậy AI,BD,MP đồng quy tại trung điểm BD (đpcm).
Gọi S là giao điểm của MP và BD
Vì P là giao điểm của MS và BC
=> Tứ giác BMCS là hình bình hành
=> \(MC//BD\)
Mà M là trung điểm của AB
=> C là trung điểm của AD
CMTT S là trung điểm của BD
=> BC; DM lần lượt là trung tuyến của tam giác ABD
Mà BC giao DM tại I
=> I là trọng tâm của tam giác ABD
Mà S là trung điểm của BD
=> A;I;S thẳng hàng
=> AI;BD;MP đồng quy tại S
Vậy AI;BD;MP đồng quy tại S
https://hoc24.vn/cau-hoi/tu-diem-m-nam-trong-tam-giac-abc-ke-tia-mxmymz-theo-thu-tu-vuong-goc-voi-bcacab-tren-tia-mxmymz-lan-luot-lay-cac-diem-pqr-sao-cho-mpbcmqcamrabchung-minh-rang-m-la-trong-tam-cua-tam-gia.171683942010
Xét ΔCDB có CN/CD=CP/CB
nên NP//BD và NP=DB/2
Xét ΔEDB có EM/ED=EQ/EB
nên MQ//BD và MQ=BD/2
=>NP//MQ và NP=MQ
Xét ΔDEC có DN/DC=DM/DE
nên MN//EC
=>MN vuông góc với AB
=>MN vuông góc với NP
Xét tứ giác MNPQ có
NP//MQ
NP=MQ
MN vuông góc với NP
Do đó: MNPQ là hình chữ nhật
=>M,N,P,Q cùng thuộc 1 đường tròn
=>MP=NQ
*) Trong tam giác DEC có EM=ME; DQ=QC => MQ là đường trung bình của tam giác DEC=> MQ//AC
Xét tương tự thì NP//AC
=> MQ//NP.
Tương tự thì NM//PQ => tứ giá MNPQ là hình bình hành.
Ta lại có NM//AB;MQ//AC => \(\widehat{NMQ}=\widehat{BAC}=90^o\) (cái này chắc nâng cao lớp 7 học roài)
=> tứ giá MNPQ là hình chữ nhật => NQ=MP.