Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Ta có BM=MD (gt)
=> \(\Delta\)MBD cân tại M
Mặt khác \(\widehat{AMB}=\widehat{ACB}\) ( Hai góc nội tiếp chắn cung AB)
Mà \(\widehat{ACB}=60^0\)( tam giác ABC đều)
Suy ra \(\widehat{AMB}=60^0hay\widehat{DMB}=60^0\)
Vậy \(\Delta MBD\) đều
b) Ta có \(\Delta MBD\) đều ( CMT)
Suy ra : \(\widehat{DMB}=\widehat{DBC}+\widehat{CBM}=60^0\)(1)
Lại có : tam giác ABC đều (gt)
Suy ra : \(\widehat{ABC}=\widehat{ABD}+\widehat{DBC}=60^0\)(2)
Từ (1) và (2) suy ra \(\widehat{ABD}=\widehat{MBC}\)
Xét hai tam giác ABD và CBM ta có
BC=BA (gt)
\(\widehat{ABD}=\widehat{MBC}\left(cmt\right)\)
BD=BM( tam giác MBD đều)
=> \(\Delta ABD=\Delta CBM\left(c.g.c\right)\)
c)\(\Delta ABD=\Delta CBM\left(cmt\right)\)
SUy ra AD=CM
mà AM=AD+DM
SUy ra MA=MC+MD
mình nghĩ đề cho bổ sung là cho tam giác ABC đều nội tiếp đường tròn ( O ) vì mình đã từng làm rồi
lời giải :
a) vì MD = MB nên \(\Delta MBD\)cân tại M
\(\widehat{BMD}=\widehat{BCA}=60^o\)( cùng chắn cung AB )
\(\Rightarrow\)\(\Delta MBD\)đều
b) Xét \(\Delta MBC\)và \(\Delta BDA\)có :
MB = BD ; BC = AB ; \(\widehat{MBC}=\widehat{DBA}\)( cùng cộng góc DBC bằng 60 độ )
\(\Rightarrow\Delta MBC=\Delta DBA\left(c.g.c\right)\)suy ra MC = AD
c) Mà MB = MD ( câu a )
nên MC + MB = MD + AD = MA
d) Ta có : MA là dây cung của ( O ; R ) \(\Rightarrow MA\le2R\)
\(\Rightarrow MB+MC+MA=2MA\le4R\)( không đổi )
Dấu " = " xảy ra \(\Leftrightarrow\)MA là đường kính hay M là điểm chính giữa của cung BC
Tự vẽ hình nha!
a, Xét (O) có AB = AC (gt) => cung AB = cung AC (đl)
=> góc AMB = góc AMC (vì hai góc nội tiếp chắn 2 cung bằng nhau thì bằng nhau)
=> MA là tia phân giác của góc BMC
b, Xét (O) có góc AMB = góc ACB (góc nội tiếp chắn cung AB)
mà góc ACB = 600 (gt)
=> góc AMB = 600 hay góc BMD = 600
Xét △BMD có MB = MD (gt) => △BMD cân tại M (dhnb)
lại có góc BMD = 600 (cmt)
=> △BMD đều (dhnb)
c, Vì △BMD đều (cmt) => MB = BD (tc)
Xét (O) có góc BAM = góc BCM (góc nội tiếp chắn cung BM)
hay góc BAD = góc BCM
Xét △ADB và △CMB có: AB = BC(gt), góc BAD = góc BCM (cmt), BD = MB (cmt)
Vậy △ADB = △CMB(cgc)
d, Vì △ADB = △CMB (cmt) => AD = MC (2 cạnh tương ứng)
Ta có MA = AD + MD
mà AD = MC (cmt), MD = MB (gt)
=> MA = MB + MC (đpcm)
làm câu b chứ câu a chưa làm được vì đây mới lớp 8
Trên MA lấy I sao cho MI = MB. Tam giác MBI đều, suy ra \(\widehat{IBM}=60^o\)
\(\Rightarrow\)\(\widehat{B_1}=\widehat{B_2}\)
\(\Delta ABI=\Delta CBM\left(c-g-c\right)\)nên AI = MC. Từ đó MA = MB + MC.
\(\Rightarrow\)\(MA=MB+MC\left(ĐPCM\right)\)
a/ Xét \(\Delta BMD\)ta có:
\(MD=MB\left(gt\right)\)=> \(\Delta BMD\)cân tại M
Mà \(B\widehat{M}D=A\widehat{C}B=60^0\)( 2 góc n.t chắn cung AB)
Nên \(\Delta BMD\)đều
b/ Ta có \(\hept{\begin{cases}A\widehat{B}D+D\widehat{B}C=A\widehat{B}C\\D\widehat{B}C+M\widehat{B}C=D\widehat{B}M\\A\widehat{B}C=D\widehat{B}M\left(=60^0\right)\end{cases}}\)
=> \(A\widehat{B}D=M\widehat{B}C\)
Xét \(\Delta ADB\)và \(\Delta MBC\)ta có :
\(\hept{\begin{cases}BD=BM\left(\Delta MBDđều\right)\\BA=BC\left(\Delta ABCđều\right)\\A\widehat{B}D=M\widehat{B}C\left(cmt\right)\end{cases}}\)
=> \(\Delta ADB=\Delta CMB\)(c-g-c)
=>\(AD=MC\)
Ta có: \(\hept{\begin{cases}AM=AD+MD\\MD=MB\left(\Delta MBDđều\right)\\AD=MC\left(cmt\right)\end{cases}}\)
=>\(AM=MB+MC\)
c/
Ta có: \(AB=AC\)<=>\(\widebat{AB}=\widebat{AC}\)
Xét \(\Delta MAB\)và\(\Delta MHC\)ta có:
\(B\widehat{A}M=H\widehat{C}M\)(2 góc n.t chắn cung MB )
\(A\widehat{M}B=H\widehat{M}C\)(2 góc n.t chắn 2 cung = nhau )
=>\(\Delta MAB\)đồng dạng\(\Delta MCH\)
=>\(\frac{MA}{MC}=\frac{MB}{MH}\)=>\(\frac{MA}{MB.MC}=\frac{1}{MH}\)=>\(\frac{MB+MC}{MB.MC}=\frac{1}{MH}\)=>\(\frac{1}{MB}+\frac{1}{MC}=\frac{1}{MH}\left(đpcm\right)\)