K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
23 tháng 4 2018
a) MP // AC => ^MPB=^CAB; ^PMB=^ACB. Mà ^CAB=^ACB=600
=> ^MPB=^PMB=600 => Tam giác BPM là tam giác đều (đpcm).
b) Tam giác BPM là tam giác đều (cmt) => PM=BP
Ta có: PM//AN; M//AP => PM=AN (Tính chất đoạn chắn)
=> BP=AN.
Tam giác ABC đều và O là trọng tâm nên ta có: ^OBA=^OAC=300 hay ^OBP=^OAN và OB=OA
Xét tam giác OAN và tam giác OBP: BP=AN; OA=OB; ^OAN=^OBP
=> Tam giác OAN= Tam giác OBP (đpcm)
c) Tam giác AIP=Tam giác MIN (g.c.g) => IP=IN hay I là trung điểm của NP
Tam giác OAN=Tam giác OBP (cmt) => ON=OP => O nằm trên trung trực của NP (1)
HP=HN => H nằm trên trung trực của NP (2)
Từ (1) và (2) kết hợp với I là trung điểm của NP => H;I;O thẳng hàng (đpcm).
Lời giải:
a) Tam giác $ABC$ đều nên \(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)
Ta có: \(DE\parallel AC\Rightarrow \widehat{BDE}=\widehat{BCA}=60^0\). Kết hợp với \(\widehat{EBD}=\widehat{ABC}=60^0\) suy ra tam giác $EBD$ đều
\(\Rightarrow DE=DB\)
Tương tự $DFC$ cũng là tam giác đều \(\Rightarrow DF=DC\)
Do đó \(\frac{BD}{ED}=\frac{DF}{DC}=1\)
\(\widehat{BDF}=180^0-\widehat{FDC}=180^0-60^0=120^0\)
\(\widehat{EDC}=180^0-\widehat{EDB}=180^0-60^0=120^0\)
\(\Rightarrow \widehat{BDF}=\widehat{EDC}\)
Xét tam giác BDF và EDC có: \(\left\{\begin{matrix} \widehat{BDF}=\widehat{EDC}(\text{cmt})\\ \frac{BD}{ED}=\frac{DF}{DC}\end{matrix}\right.\) \(\Rightarrow \triangle BDF=\triangle EDC\) (c.g.c)
b) Vì \(\triangle BDF\sim \triangle EDC\Rightarrow \left\{\begin{matrix} \widehat{DBF}=\widehat{DEC}\Leftrightarrow \widehat{DBH}=\widehat{DEI}\\ \frac{BD}{ED}=\frac{BF}{EC}=\frac{2BH}{2EI}=\frac{BH}{EI}\end{matrix}\right.\)
Từ hai điều này suy ra \(\triangle BDH\sim \triangle EDI(c.g.c)\)
\(\Rightarrow \frac{DH}{DI}=\frac{BD}{ED}=1\)\(\Rightarrow DH=DI(1)\) và \(\widehat{BDH}=\widehat{EDI}\Leftrightarrow \widehat{BDE}+\widehat{EDH}=\widehat{EDH}+\widehat{HDI}\)
\(\Rightarrow \widehat{BDE}=\widehat{HDI}\Leftrightarrow \widehat{HDI}=60^0(2)\)
Từ (1); (2) suy ra tam giác DHI đều .