Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác \(BKC\)vuông tại \(K\)có \(M\)là trung điểm của cạnh huyền \(BC\)nên \(KM=\frac{1}{2}BC\).
Tương tự ta cũng có \(HM=\frac{1}{2}BC\)
Suy ra \(KM=HM\)
\(\Rightarrow\Delta MKH\)cân tại \(M\).
Kẻ \(MN\)vuông góc với \(DE\).
Suy ra \(MN//BD//CE\)mà \(M\)là trung điểm của \(BC\)nên \(MN\)là đường trung bình của hình thang \(BDEC\).
suy ra \(N\)là trung điểm của \(DE\Rightarrow DN=NE\)(1).
Mà tam giác \(MKH\)cân tại \(M\)nên \(MN\)là đường cao đồng thời cũng là đường trung tuyến suy ra \(KN=HN\)(2)
(1) (2) suy ra \(DN-KN=EN-HN\Leftrightarrow DK=HE\).
Ta có đpcm.
a: Xét ΔABC có
M là trung điểm của BA
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
=>MN=BE và MN//BE
=>BMNE là hình bình hành
b: Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến
nên HM=AM
=>M nằm trên đường trung trực của AH(1)
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến
nên HN=AC/2=AN
=>N nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra MN là đường trung trực của AH
Xét ΔABC có
M là trung điểm của AB
E là trung điểm của BC
Do đó: ME là đường trung bình
=>ME=AC/2
mà HN=AC/2
nên ME=HN
Xét tứ giác MNEH có MN//EH
nên MNEH là hình thang
mà ME=NH
nên MNEH là hình thang cân
a: Ta có: ΔBKC vuông tại K
mà KM là đường trung tuyến
nên KM=BC/2(1)
Ta có: ΔBHC vuông tại H
mà HM là đường trung tuyến
nên HM=BC/2(2)
Từ (1)và (2) suy ra MH=MK
hay ΔMHK cân tại M
b: Kẻ MN vuông góc với HK
=>N là trung điểm của HK
Xét hình thang CBDE có
M là trung điểm của BC
MN//DB//EC
DO đó: N là trung điểm của DE
=>DK=HE
a) Xét ΔBCK vuông tại K có KM là trung tuyến ⟹KM=1/2BC
Xét ΔBCH vuông tại K có HM là trung tuyến ⟹HM=1/2BC
⟹KM=HM⟹ΔHKM cân tại M
b) Kẻ MN⊥DE(N∈DE)
Ta có: BD⊥DE;CE⊥DE⟹BD//CE
⟹BDEC là hình thang
Xét hình thang BDEC có: MN⊥DE⟹MN//CE;BM=CM(gt)⟹DN=EN=EN
Mặt khác, ΔKHMΔKHM là tam giác cân có MN⊥DE⟹MN
Trừ theo vế (1) và (2) ta có: DN−KN=EN−HN⟹DK=HE
Bài 1:
a: Ta có: ΔBKC vuông tại K
mà KM là đường trung tuyến
nên KM=BC/2(1)
Ta có: ΔBHC vuông tại H
mà HM là đường trung tuyến
nên HM=BC/2(2)
Từ (1)và (2) suy ra MH=MK
hay ΔMHK cân tại M
b: Kẻ MN vuông góc với HK
=>N là trung điểm của HK
Xét hình thang CBDE có
M là trung điểm của BC
MN//DB//EC
DO đó: N là trung điểm của DE
=>DK=HE
a: Xét ΔABC có
M,N lần lượt là trung điểm của AB và AC
nên MN là đường trung bình
=>MN//BC và MN=BC/2
=>MN//BE và MN=BE
=>BMNE là hình bình hành
b: Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến
nên HM=AM(1)
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến
nên HN=AN(2)
Từ (1)và (2) suy ra AH là đường trung trực của MN
Xét ΔABC có
E,M lần lượt là trung điểm của CB và BA
nên ME là đường trung bình
=>ME=CA/2=NH
Xét tứ giác MNEH có MN//EH
nên MNEH là hình thang
mà ME=NH
nên MNEH là hình thang cân
a: Xét tứ giác BDEC có góc BDE=góc CED=90 độ
nen BDEC là hình thang vuông
c: Kẻ MN vuông góc với HK
=>N là trung điểm của HK
Xét hình thang CBDE có
M là trung điểm của BC
MN//DB//EC
DO đó: N là trung điểm của DE
=>DK=HE
Gọi M là trung điểm của BC,I là trung điểm của HK.
BH vuông góc với AC (gt) nên BHC=90 độ
Tam giác BHC vuông tại H có HM là đường trung tuyến ứng với cạnh huyền BC suy ra: HM=1/2 BC
Tương tự:KM=1/2 BC
Tam giác HKM cân tại M(do HM=KM=1/2 BC) có MI là đường trung tuyến ứng với cạnh KH nên MI đồng thời là đường cao(t/c tam giác cân)
Do đó: MI vuông góc với KH hay MI vuông góc với DE.
BD và CE cùng vuông góc với HK (gt) nên BD song song với CE suy ra: BDEC là hình thang.
Hình thang BDCE có M là trung điểm của BC và MI song song với BD và CE
Do đó: I là trung điểm của DE
Ta có: IH=IK và ID=IE
suy ra: ID -IK =IE -IH
Vậy DK=HE
ΔBKC vuông tại K
mà KM là trung tuyến
nên KM=BC/2
ΔBHC vuông tạiH
mà HM là trung tuyến
nên HM=BC/2
=>MH=MK
=>ΔMHK cân tại M
=>góc MHK=góc MKH