K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔPIM vuông tại I

=>IP^2+IM^2=MP^2

=>IM^2=10^2-6^2=64

=>IM=8(cm)

Xét ΔMNP vuông tại M có MI là đường cao

nên PI*PN=PM^2

=>PN=10^2/6=50/3(cm)

Xét ΔMNP vuông tại M có MI là đường cao

nên MI^2=IN*IP

=>IN=8^2/6=32/3(cm)

Xét ΔMNP vuông tại M có sin MNP=MP/PN

=10:50/3=3/5

=>góc MNP=37 độ

b: C=MN+NP+MP

=10+40/3+50/3

=10+90/3

=10+30

=40(cm)

c: Xét ΔIMP vuông tại I có IK là đường cao

nên IK*PM=IP*IM

=>IK*10=6*8=48

=>IK=4,8(cm)

28 tháng 4 2018

Xét tứ giác MIHK ta có M ^ = I ^ = K ^ = 90 0

=> MIHK là hình chữ nhật (dhnb)

=> HI = ML = 6cm

Áp dụng định lý Pytago cho MHK vuông tại K ta có:

Áp dụng hệ thức lượng trong MHP vuông tại H có đường cao HI ta có:

Áp dụng định lý Pytago cho MNP vuông tại N ta có:

Đáp án cần chọn là: B

26 tháng 10 2023


 A  áp dụng hệ thức lượng trong tam giác....
+  MI=NI*IP
  MI=5*7
MI=35
BC=NI+IP
BC=5+7=12
+   MN=NP*NI
MN=  12*5=60
 

2: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHN vuông tại H có HD là đường cao ứng với cạnh huyền MN, ta được:

\(MD\cdot MN=MH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHP vuông tại H có HE là đường cao ứng với cạnh huyền MP, ta được:

\(ME\cdot MP=MH^2\left(2\right)\)

Từ (1) và (2) suy ra \(MD\cdot MN=ME\cdot MP\)

29 tháng 9 2023

Xét `\triangle MNP` vuông tại `M` có `MI` là đường cao

  `@MN=\sqrt{MI^2+NI^2}=\sqrt{881}`.

  `@NP=[MN^2]/[NI]=35,24`.

  `@MP=\sqrt{NP^2-MN^2}=[16\sqrt{881}]/25`.

  `@IP=\sqrt{MP^2-MI^2}=10,24`.