K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

A B C E D

Xét tam giác BAD, ta có:

CosA= \(\dfrac{AD}{AB}\) (1)

Xét tam giác CAE, ta có:

CosA= \(\dfrac{AE}{AC}\) (2)

Từ (1) và (2) suy ra:

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) (3)

Ta lại có: góc A : góc chung (4)

Từ (3) và (4) suy ra:

Tam giác ADE ∽ tam giác ABC


8 tháng 8 2020

bạn tham khảo câu hỏi này : https://olm.vn/hoi-dap/detail/216062676408.html

nếu không hiện link mình sẽ gửi qua tin nhắn nhé

14 tháng 6 2019

A B C D E

\(\cos^2\widehat{A}=\frac{AE^2}{AC^2}=\frac{AD^2}{AB^2}\)

Xét tam giác ADE và tam giác ABC có : 

\(\frac{AD}{AB}=\frac{AE}{AC}\) \(\left(=\cos\widehat{A}\right)\)

\(\widehat{A}\) là góc chung 

Do đó : \(\Delta ADE~\Delta ABC\left(c-g-c\right)\)

Mà tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng nên 

\(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=\left(\frac{AE}{AC}\right)^2=\cos^2\widehat{A}\)\(\Rightarrow\)\(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) ( đpcm ) 

làm tạm 1 câu :v 

14 tháng 6 2019

\(S_{ADE}+S_{BCDE}=S_{ABC}.1=S_{ABC}\left(\sin^2\widehat{A}+\cos^2\widehat{A}\right)\)

\(\Rightarrow\)\(S_{ADE}+S_{BCDE}=S_{ABC}.\sin^2\widehat{A}+S_{ABC}.\cos^2\widehat{A}\)

\(\Leftrightarrow\)\(S_{BCDE}=S_{ABC}.\sin^2\widehat{A}\) ( do \(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) ) 

Xét ΔABD vuông tại D có \(\cos BAD=\dfrac{AD}{AB}\)(1)

Xet ΔACE vuông tại E có \(\cos CAE=\dfrac{AE}{AC}\left(2\right)\)

Từ (1) và (2) suy ra AD/AB=AE/AC

Xét ΔADE và ΔABC có 
AD/AB=AE/AC

góc DAE chung

DO đó: ΔADE\(\sim\)ΔABC

22 tháng 8 2021

Do ^AEH=^ADH=90o nên tứ giác AEHD nội tiếp đường tròn.
Suy ra đường tròn ngoại tiếp tam giác AED chính là đường tròn đường kính AH.

Do H là giao điểm hai đường cao BD và CE nên H là trực tâm. Thế thì AH  BC.
Suy ra  ^DAH=^DBC (vì cùng phụ với góc ^DCB).
Tam giác BDC vuông tại D có I là trung điểm của BC nên IB = ID = IC.
Suy ra tam giác IBD cân ở I.  Vì vậy ^IDB=^DBI.
Từ đó suy ra: ^HAD=^HBI=^BDI  hay  ^HAD=^HDI.

Gọi J là trung điểm AH. Ta có ^HAD=^JDA^JDA=^HDI.

Vậy nên ^JDI=^HDI+^JDH=^JDA+^FDH=^ADH=90o.
Suy ra DI là tiếp tuyến của đường tròn đường kính AH.
Chứng minh tương tự ta cũng có EI là tiếp tuyến của đường kính AH.

22 tháng 8 2021

Do \widehat{AEH}=\widehat{ADH}=90^o nên tứ giác AEHD nội tiếp đường tròn.
Suy ra đường tròn ngoại tiếp tam giác AED chính là đường tròn đường kính AH.

Do H là giao điểm hai đường cao BD và CE nên H là trực tâm. Thế thì AH \perp BC.
Suy ra  \widehat{DAH}=\widehat{DBC} (vì cùng phụ với góc \widehat{DCB}).
Tam giác BDC vuông tại D có I là trung điểm của BC nên IB = ID = IC.
Suy ra tam giác IBD cân ở I.  Vì vậy \widehat{IDB}=\widehat{DBI}.
Từ đó suy ra: \widehat{HAD}=\widehat{HBI}=\widehat{BDI}  hay  \widehat{HAD}=\widehat{HDI}.

Gọi J là trung điểm AH. Ta có \widehat{HAD}=\widehat{JDA}\Rightarrow\widehat{JDA}=\widehat{HDI}.

Vậy nên \widehat{JDI}=\widehat{HDI}+\widehat{JDH}=\widehat{JDA}+\widehat{FDH}=\widehat{ADH}=90^o.
Suy ra DI là tiếp tuyến của đường tròn đường kính AH.
Chứng minh tương tự ta cũng có EI là tiếp tuyến của đường kính AH.

Y
18 tháng 4 2019

a) + ΔADB ∼ ΔAEC ( g.g )

\(\Rightarrow\frac{AD}{AB}=\frac{AE}{AC}\Rightarrow\frac{AD}{AE}=\frac{AB}{AC}\)

+ ΔADE ∼ ΔABC ( c.g.c )

b) + AC // MH \(\Rightarrow\frac{AH}{AB}=\frac{MC}{CB}\)

+ AB // MK \(\Rightarrow\frac{CK}{AC}=\frac{MC}{CB}\)

\(\Rightarrow\frac{CK}{AC}-\frac{AH}{AB}=0\)

\(\Rightarrow\left(\frac{CK}{AC}+1\right)-\frac{AH}{AB}=1\)

\(\Rightarrow\frac{AK}{AC}-\frac{AH}{AB}=1\)