K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

S B H C = 1 2 H D . B C   ;   S A B C = 1 2 A D . B C ⇒ S B H C S A B C = H D A D   ( 1 )

Chứng minh tương tự, ta có:

S A H C S A B C = H E B E   ;   S A H B S A B C = H F C F     (2)

Từ (1) và (2), suy ra được H D A D + H E B E + H F C F = 1  (ĐPCM)

25 tháng 2 2020

a)Kết quả hình ảnh cho Cho tam giác ABC nhọn, các đường cao AD,BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB).a) chứng minhHD/ADNguồn: Lazi.

Bài 10:

a) Xét ΔABE vuông tại E và ΔCBD vuông tại D có 

\(\widehat{DBC}\) chung

Do đó: ΔABE\(\sim\)ΔCBD(g-g)

b) Xét ΔHDA vuông tại D và ΔHEC vuông tại E có 

\(\widehat{AHD}=\widehat{CHE}\)(hai góc đối đỉnh)

Do đó: ΔHDA\(\sim\)ΔHEC(g-g)

Suy ra: \(\dfrac{HD}{HE}=\dfrac{HA}{HC}\)

hay \(HD\cdot HC=HE\cdot HA\)

Bài 11: 

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có

\(\widehat{FAC}\) chung

Do đó: ΔABE\(\sim\)ΔACF(g-g)

b) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔFHB\(\sim\)ΔEHC(g-g)

Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)

hay \(HE\cdot HB=HF\cdot HC\)

c) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

Suy ra: \(\widehat{AEF}=\widehat{ABC}\)

a: BH vuông góc CA

CD vuông góc CA

=>BH//CD

b: CH vuông góc AB

AB vuông góc BD

=>BD//Ch

Xét tứ giác BHCD có

BH//CD

BD//CH

=>BHCD là hbh

 

a: Xét ΔABC có 

BE là đường cao

CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AD vuông góc với BC

b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)

Do đó: ΔHFB\(\sim\)ΔHEC

Suy ra: HF/HE=HB/HC

hay \(HF\cdot HC=HB\cdot HE\left(1\right)\)

Xét ΔAHF vuông tại F và ΔCHD vuông tại D có 

\(\widehat{AHF}=\widehat{CHD}\)

Do đó: ΔAHF\(\sim\)ΔCHD

SUy ra: HA/HC=HF/HD

hay \(HF\cdot HC=HA\cdot HD\left(2\right)\)

Từ (1) và (2) suy ra \(HF\cdot HC=HA\cdot HD=HE\cdot HB\)

c: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc BAE chung

Do đó:ΔAEB\(\sim\)ΔAFC

Suy ra: AE/AF=AB/AC

hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có 

AE/AB=AF/AC

góc FAE chung

Do đó: ΔAEF\(\sim\)ΔABC

10 tháng 5 2017

undefined

27 tháng 8 2017

Ôn tập cuối năm phần hình học

Nối E với D.\(EK\cap BC=\left\{M\right\}\).

Xét tam giác DME và tam giác DMK ta có:

\(\left\{{}\begin{matrix}EM=KM\left(gt\right)\\\widehat{DME}=\widehat{DMK}\left(=90^o\right)\\DM:chung\end{matrix}\right.\)

Do đó \(\Delta DME=\Delta DMK\left(c.g.c\right)\)

\(\Rightarrow\widehat{MDE}=\widehat{MDK}\left(cgtu\right)\)(1)

\(\widehat{MDK}=\widehat{BDF}\left(d.d\right)\)

\(\Rightarrow\widehat{MDE}=\widehat{BDF}\)

Ta có:

\(\widehat{HDM}=\widehat{HDB}\left(=90^o\right)\)

\(\Rightarrow\widehat{EDM}+\widehat{EDH}=\widehat{FDB}+\widehat{FDH}\)

\(\widehat{EDM}=\widehat{FDB}\left(cmt\right)\)

Do đó \(\widehat{EDH}=\widehat{FDH}\)(2)

Từ (1) và (2) suy ra:

\(\widehat{EDH}+\widehat{EDM}=\widehat{FDH}+\widehat{KDM}\)

\(\Rightarrow\widehat{FDH}+\widehat{KDM}=90^o\)

Do đó: \(\widehat{EDH}+\widehat{EDM}+\widehat{FDH}+\widehat{KDM}=90^o+90^o\)

\(\Rightarrow\widehat{FDK}=180^o\)

Vậy ba điểm F;D;K thẳng hàng

Chúc bạn học tốt!!!

27 tháng 8 2017

Có gì đó không đúng.

26 tháng 2 2023

A B C H E F

a)Xét tam giác ABE và tam giác ACF có:

\(\widehat{AFC}=\widehat{AEB}\)

\(\widehat{A}\) chung

=> tam giác ABE và tam giác ACF đồng dạng

\(\Rightarrow\dfrac{AF}{AE}=\dfrac{FC}{BE}=\dfrac{AC}{AB}\Rightarrow\dfrac{AF}{AE}=\dfrac{AC}{AB}\Rightarrow AF.AB=AE.AC\)

đó vậy là xong ý a rồi những ý khác tương tự. Bạn phải biết cách chọn tỉ số chính xác ở bài toán này nhá :3

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét ΔHFB vuông tại Fvà ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng vơi ΔHEC
=>HF/HE=HB/HC

=>HF*HC=HB*HE

c: Xét ΔBFH vuông tại F và ΔBEA vuông tại E có

góc FBH chung

=>ΔBFH đồng dạng với ΔBEA

=>BF/BE=BH/BA

=>BF*BA=BH*BE

d: Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

góc ECH chung

=>ΔCEH đồng dạng với ΔCFA

=>CE/CF=CH/CA

=>CE*CA=CF*CH