Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét tam giác EHB và tam giác DHC có :
\(\widehat{EHB}=\widehat{DHC}\left(đđ\right)\)
\(\widehat{HEB}=\widehat{HDC}\)
\(\Rightarrow\) tam giác EHB đồng dạng với tam giác DHC (g-g)
b)
Do tam giác EHB đồng dạng với tam giác DHC
\(\Rightarrow\frac{EH}{DH}=\frac{HB}{HC}\)
Xét tam giác HED và tam giác HBC có :
\(\frac{EH}{DH}=\frac{HB}{HC}\)
\(\widehat{EHD}=\widehat{BHC}\)
\(\Rightarrow\) tam giác HED đồng dạng với tam giác HBC (c-g-c)
a) Xét \(\Delta ADB\) và \(\Delta AEC\) co:
\(\widehat{ADB}=\widehat{AEC}=90^0\)
\(\widehat{A}\) CHUNG
Suy ra: \(\Delta ADB~\Delta AEC\)
b) Xét \(\Delta EHB\) và \(\Delta DHC\) có:
\(\widehat{HEB}=\widehat{HDC}=90^0\)
\(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
suy ra: \(\Delta EHB~\Delta DHC\)
\(\Rightarrow\)\(\frac{EH}{DH}=\frac{HB}{HC}\)
\(\Rightarrow\)\(HB.DH=HC.HE\)
a. -Xét △BEH và △CDH có:
\(\widehat{BEH}=\widehat{CDH}=90^0\)
\(\widehat{BHE}=\widehat{CHD}\)(đối đỉnh)
\(\Rightarrow\)△BEH∼△CDH (g-g).
\(\Rightarrow\dfrac{BH}{CH}=\dfrac{EH}{DH}\).
-Xét △HED và △HBC có:
\(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)
\(\dfrac{BH}{CH}=\dfrac{EH}{DH}\left(cmt\right)\)
\(\Rightarrow\)△HED∼△HBC (c-g-c).
b. -Ta có: \(\widehat{AED}+\widehat{DEC}=90^0\) (kề phụ).
\(\widehat{DBC}+\widehat{DCB}=90^0\) (△DBC vuông tại D).
Mà \(\widehat{DEC}=\widehat{DBC}\)(△HED∼△HBC)
\(\Rightarrow\)\(\widehat{AED}=\widehat{DCB}\)
-Xét △AED và △ACB có:
\(\widehat{AED}=\widehat{ACB}\) (cmt)
\(\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△AED∼△ACB (g-g).
c. -Có: \(\widehat{EAC}=45^0\) (gt) ; △AEC vuông tại E (AB⊥CE tại E).
\(\Rightarrow\)△AEC vuông cân tại E.
\(\Rightarrow AE=AC\sqrt{2}\)
-Ta có: △AED∼△ACB (cmt)
\(\Rightarrow\dfrac{ED}{BC}=\dfrac{AE}{AC}=\dfrac{AC\sqrt{2}}{AC}=\sqrt{2}\)
\(\Rightarrow\dfrac{ED}{\sqrt{2}}=\sqrt{2}\)
\(\Rightarrow ED=2\)
a, Xét tam giác BAD và tam giác CAE có
^A _ chung
^BDA = ^CEA = 900
Vậy tam giác BAD ~ tam giác CAE (g.g)
b, => ^ABD = ^ACE (2 góc tương ứng)
Xét tam giác HBE và tam giác HCD ta có
^HBE = ^HCE (cmt)
^BHE = ^CHD (đ.đ)
Vậy tam giác HBE ~ tam giác HCD (g.g)
\(\dfrac{HB}{HC}=\dfrac{HE}{HD}\Rightarrow HD.HB=HE.HC\)
c, xem lại cách viết cạnh tương ứng tam giác bạn nhé
Xét tam giác BHC và tam giác EHD ta có
\(\dfrac{BH}{EH}=\dfrac{HC}{HD}\)(tỉ lệ thức của tỉ số đồng dạng trên)
^BHC = ^EHD (đ.đ)
Vậy tam giác BHC ~ tam giác EHD (c.g.c)
bạn tự làm câu a,b,c nhá.
d,Xét tam giác ABD và tam giác ACE có:
Chung góc A
góc ADB=góc AEC(=90 độ)
suy ra tam giác ABC đồng dạng tam giác ACE(g.g)
suy ra
AB/AC=AD/AE(đ/n 2 tam giác đồng dạng)
suy ra AB.AE=AC.AD(dieu phai cm)
e.Kẻ AH vuông góc với BC tại I
Xét BIH và BCD có:(mk viết tắt Tam giác nha)
Chung góc B
góc I=góc D(=90 độ)
suy ra BHI đồng dạng BCD(g.g)
suy ra HB/BC=BI/BD(đ/n 2 tam giác đồng dạng)
suy ra BH.BD=BC.BI (1)
tương tự xét CHI đồng dạng CBE(chung goc C;goc I=gocE=90 độ)
suy ra CH.CE=BC.IC (2)
từ (1) và (2) suy raBH.BD+CH.CE=BC.BI+BC.IC
=BC.(BI+IC)
=BC.BC
=BC2
Vậy BH.BD+CH.CE=BC2.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E co
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE;AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔABD∼ΔACE(g-g)
b) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔEHB∼ΔDHC(g-g)
Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BH\cdot HD=CH\cdot HE\)(đpcm)