K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BCa) tứ giác BCDE là hình gì? vì sao?b) tứ giác BEDF là hình gì? vì sao?c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhậtd) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàngb2: cho tam giác ABC cân tại A. đường trung tuyến AI....
Đọc tiếp

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BC
a) tứ giác BCDE là hình gì? vì sao?
b) tứ giác BEDF là hình gì? vì sao?
c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhật
d) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàng
b2: cho tam giác ABC cân tại A. đường trung tuyến AI. E là trung điểm của AC, M là điểm đối xứng với I qua E.
a) cmr tứ giác AMCI là hình chữ nhật
b) AI cắt BM tại O. cmr OE // IC
b3: cho tam giác ABC vuông tại A, có góc B bằng 60 độ, AB = 3cm, AM là trung tuyến của tam giác.
a) Tính độ dài cạnh BC và số đo góc MAC
b) trung trực của cạnh BC cắt AB tại E và cắt AC tại F. chứng minh B với E đối xứng qua AC và FC = 2FA
c) gọi I là trung điểm của đoạn FC. K là trung điểm của đoạn FE. chứng minh tứ giác AMIK là hình chữ nhật và tính diện tích hình chữ nhật AMIK. 
d) P là trung điểm của FI, Q là trung điểm của FK. cmr 3 đường thẳng AQ,BF,MP đồng quy

0
19 tháng 6 2018

cho tứ giác ABCD có hai góc đối bù nhau.Đường thẵng AD và BC cắt nhau tai E,hai đường thẵng AB và DC cắt nhau tại F.Kẻ phân giác của hai góc BFC và CEP cắt nhau tại M. CMR góc EMF =90 

28 tháng 8 2016

Có: \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{DBC}=\widehat{ECB}\) (BC là cạnh chung)

\(\Rightarrow\Delta DBC=\Delta ECB\)

\(\Rightarrow\) AE//AB = AD//AC

\(\Rightarrow\) ED//BC

Từ a) có: \(\widehat{EDB}=\widehat{DBC}\) (so le trong)

\(\widehat{DBC}=\widehat{EBD}\) (BD là tia phân giác)

\(\Rightarrow\widehat{EDB}=\widehat{DBC}=\widehat{EBD}\)

\(\Rightarrow\Delta BED\) cân tại E

\(\Rightarrow BE=ED\)

AI cắt ED tại J', ta cm J' ≡ J 
Từ tính chất tam giác đồng dạng ta có: 
EJ'/BI = AE/AB = ED/BC = ED/2BI 
=> EJ' = ED/2 => J' là trung điểm ED => J' ≡ J 
Vậy A,I,J thẳng hàng 
*OI cắt ED tại J" ta cm J" ≡ J 
hiễn nhiên ta có: 
OD/OB = ED/BC (tgiác ODE đồng dạng tgiác OBC) 
mặt khác: 
^J"DO = ^OBI (so le trong), ^J"OD = ^IOB (đối đỉnh) 
=> tgiác J"DO đồng dạng với tgiác IBO 
=> J"D/IB = OD/OB = ED/BC = ED/ 2IB 
=> J"D = ED/2 => J" là trung điểm ED => J" ≡ J 
Tóm lại A,I,O,J thẳng hàng