Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a : Gọi O là giao của HK và CB, ta có:
S của tam giác CHB= \(\frac{1}{2}OH\cdot CB\)
S của tam giác BKC=\(\frac{1}{2}KO\cdot CB\)
Mà ta có K là điểm đối xứng với H qua BC => KO=HO
Nên ta có thể thay
S của tam giác BKC=\(\frac{1}{2}OH\cdot CB\)
Hay \(Sbkc=Sbhc\)
Nếu đúng thì cho mk xin **** nha
a) M đối xứng H qua BC
-> BC là đường trung trực MH
-> CH = CM ; BH = BM
Xét tam giác BHC và tam giác BMC:
CH = CM (cmt)
BC : chung
BH = BM (cmt)
-> Tam giác BHC = tam giác BMC (c-c-c)
b) Xét tứ giác ADHG:
\(\widehat{A}+\widehat{AGH}+\widehat{ADH}+\widehat{GHD}=360^o\)
\(\rightarrow\widehat{GHD}=360^o-\widehat{A}-\widehat{AGH}-\widehat{ADH}\)
\(\rightarrow\widehat{GHD}=360^o-60^o-90^o-90^o=120^o\)
\(\rightarrow\widehat{GHD}=\widehat{BHC}=120^o\)( đối đỉnh )
Mà \(\widehat{BHC}=\widehat{BMC}\)( tam giác BHC = tam giác BMC )
\(\rightarrow\widehat{BMC}=120^o\)
a) Vì M đối xứng với H qua BC nên BC là đường trung trực của MH
Suy ra: BH=BM và CH=CM
Xét ΔBHC và ΔBMC có
BH=BM(cmt)
CH=CM(cmt)
BC chung
Do đó: ΔBHC=ΔBMC(c-c-c)
a: Xét ΔBHC và ΔBMC có
BH=BM
HC=MC
BC chung
Do đó: ΔBHC=ΔBMC