K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: BC=căn 3^2+4^2=5cm

AH=3*4/5=2,4cm

c: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

=>S AHB/S CHA=(AB/CA)^2=9/16

23 tháng 4 2023

a. Xét ΔABC và ΔHBA :

      \(\widehat{A}\) = \(\widehat{H}\) = 900 (gt)

       \(\widehat{B}\) chung

\(\Rightarrow\) ΔABC \(\sim\) ΔHBA (g.g)

b. Xét ΔABC vuông tại A

Theo định lý Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 62 + 82

\(\Rightarrow\) BC2 = 100

\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm

Ta có: ΔABC \(\sim\) ΔHBA 

  \(\dfrac{AH}{CA}\) = \(\dfrac{BC}{BA}\) 

\(\Rightarrow\) \(\dfrac{AH}{8}\) = \(\dfrac{10}{6}\) 

\(\Rightarrow\) AH = 13,3 cm

\(\dfrac{BH}{BA}\) = \(\dfrac{BC}{BA}\) 

\(\Rightarrow\) \(\dfrac{BH}{6}\) = \(\dfrac{10}{6}\) 

\(\Rightarrow\) BH = 10 cm

c. Xét  ΔAIH và ΔBAC :

  \(\widehat{AIH}\) = \(\widehat{BAC}\) = 900

Ta có: \(\widehat{IAH}\) = \(\widehat{ACB}\)  (phụ thuộc \(\widehat{HAC}\) )

\(\Rightarrow\) ΔAIH \(\sim\) ΔBAC (g.g)

 \(\Rightarrow\) \(\dfrac{AI}{IH}\) = \(\dfrac{AC}{AB}\) 

 \(\Rightarrow\)\(\dfrac{AI}{AK}\) = \(\dfrac{AC}{AB}\) (vì AKIH là HCN)

\(\Rightarrow\) AI . AB = AK. AC(đpcm)

23 tháng 4 2023

a) Xét ΔABC và ΔHBA ta có:

\(\widehat{B}\) chung

\(\widehat{BAC}=\widehat{BHA}=90^0\)

ΔABC ΔHBA

b) Xét ΔABC vuông tại A, áp dụng định lí pytago ta có:

\(BC^2=AB^2+AC^2\)

         \(=6^2+8^2\)

         \(=100\)

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

Vì ΔABC ∼ ΔBHA(cmt)

\(\Rightarrow\dfrac{AB}{BH}=\dfrac{AC}{AH}=\dfrac{BC}{AB}hay\dfrac{6}{BH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\)

Suy ra: \(AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)

              \(BH=\dfrac{6.3}{5}=3,6\left(cm\right)\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC

Suy ra: HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

10 tháng 5 2022

tham khảo 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC∼∼ΔHBA

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

ˆHBA=ˆHACHBA^=HAC^

Do đó: ΔHBA∼∼ΔHAC

Suy ra: HB/HA=HA/HC

hay HA2=HB⋅HC

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Ta có: ΔHBA\(\sim\)ΔABC(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{20}=\dfrac{15}{25}\)

hay AH=12(cm)

Vậy: AH=12cm

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: BC=10cm

AH=4,8cm

c: Xét ΔABH vuông tại H có HM là đườg cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay AM/AC=AN/AB

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

AM/AC=AN/AB

Do đó: ΔAMN\(\sim\)ΔACB

10 tháng 3 2022

\(a)\) Xét \(\Delta ABC\) và \(\Delta HBA:\)

\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\\ \widehat{ABC}chung.\\ \Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)

\(b)\) Xét \(\Delta ABC\) vuông tại A:

\(+)BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)\(+)AH.BC=AB.AC\) (Hệ thức lượng).\(\Rightarrow AH.10=6.8.\\ \Rightarrow AH=4,8\left(cm\right).\)\(c)\) Xét \(\Delta ABH\) vuông tại H, đường cao MH:\(AH^2=AM.AB\) (Hệ thức lượng). \(\left(1\right)\)Xét \(\Delta ACH\) vuông tại H, đường cao NH:\(AH^2=AN.AC\) (Hệ thức lượng). \(\left(2\right)\)Từ \(\left(1\right);\left(2\right)\Rightarrow AM.AB=AN.AC.\)Xét \(\Delta ACB\) và \(\Delta AMN:\)\(\Rightarrow\dfrac{AB}{AN}=\dfrac{AC}{AM}.\)\(\widehat{A}chung.\\ \dfrac{AB}{AN}=\dfrac{AC}{AM}\left(cmt\right).\\ \Rightarrow\Delta ACB\sim\Delta AMN\left(c-g-c\right).\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: BC=căn 6^2+8^2=10cm

HA=6*8/10=4,8cm

25 tháng 4 2023

làm nốt hộ mik phần C với 

25 tháng 7 2018

Giup minh vs

https://olm.vn/hoi-dap/question/1269512.html

6 tháng 4 2019

A B C H D 3 4

Xét \(\Delta ABC\)\(\perp\) tại \(A\)

Áp dụng định lí py - ta - go :

BC2 = AB2 + AC2

BC2 = 32 + 42

BC2 = 9 + 16

BC2 = 25

BC = 5 cm

Vậy BC = 5 cm .

Xét \(\Delta ABC\)có BD là đường phân giác \(\widehat{B}\)

\(\Rightarrow\)\(\frac{DA}{DC}=\frac{AB}{BC}\)\(\Rightarrow\) \(\frac{DA}{DC}=\frac{3}{5}\)\(\Rightarrow\) \(\frac{DA}{3}=\frac{DC}{5}\)\(=\frac{DA+DC}{3+5}=\frac{4}{8}=\frac{1}{2}\)

\(\Rightarrow\)\(\frac{DA}{3}=\frac{1}{2}\)\(\Rightarrow\)\(DA=\frac{3}{2}=1,5\)cm

Ta có : AC = AD + DC

           4 = 1,5 + DC

\(\Rightarrow DC=2,5\)cm

Xét \(\Delta AHB\) và  \(\Delta CAB\) có :

         \(\widehat{AHB}\)\(=\)\(\widehat{CAB}\) ( cùng bằng 900 )

           \(\widehat{B}\) chung

\(\Rightarrow\)\(\Delta AHB\)\(~\)\(\Delta CAB\) ( g - g )

6 tháng 4 2019

Do \(\Delta AHB\) \(~\)\(\Delta CAB\)

\(\Rightarrow\)\(\frac{AB}{BH}=\frac{BC}{AB}\)\(\Rightarrow\)\(AB.AB=BH.BC\)\(\Rightarrow\)\(AB^2=BH.BC\)