K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Gọi độ dài cạnh huyền là a và cạnh góc vuông chưa biết là b, cạnh đã biết là c

 Ta có b/a =4/5 

 ⇒ b = 4a/5

  Khi đó áp dụng định lý Pytago ta có

    a²= b²+ c²

 Thay b vào ta có 

  a² =(4a/5)² +9²

  a² = 16a²/25 +81

 9a²/25 = 81 

 ⇒ a² = 225

 ⇒ a =15cm

 => b= 12cm

 Khi đó AD hệ thức lượng trong tam giác ta có ( gọi độ dài hình chiếu của b và c xuống a lần lượt là x và y)

  Ta có  b² = x.a

 ⇔    12² = x . 15 

 ⇒ x =48/5 =9.6cm

  Và c² =  y.a 

 ⇒ 9² = y.15

 ⇒y= 27/5 =5.4cm

6 tháng 4 2021

ko biết làm giúp bạn này với

3 tháng 9 2020

a/ Kẻ đường cao AH => BH là hình chiếu của AB trên BC và CH là hình chiếu của AC trên BC

Giả sử \(\frac{AB}{AC}=k\Rightarrow\frac{AB^2}{AC^2}=k^2\)

Ta có \(AB^2=BH.BC;AC^2=CH.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}=k^2\) 

b/ Áp dụng câu A sẽ tính được tỷ số hình chiếu 2 cạnh góc vuông trên BC là mà biết chiều dài BC=82 bài toán là dạng tìm 2 số khi biết tổng và tỷ ở lớp 5 rồi bạn tự giải nốt nhé

21 tháng 7 2021

Gọi 2 cạnh góc vuông là `AB,AC`, cạnh huyền là `BC`

Theo đề: `(AB)/(AC)=3/4=(3x)/(4x) (x >0)`

Áp dụng định lí Pytago:

`BC^2=AB^2+AC^2`

`<=>125^2=9x^2+16x^2`

`=>x=25`

`=> AB=75 ; AC=100`

Có: `AB^2=BH.BC=>BH=45`

`=>CH=BC-BH=80`.

20 tháng 9 2017

câu 2

Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125 

Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*) 
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**) 
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0 
=> AB^2 = 5605. Vì AB > 0 => AB = 75 
AC = 4/3 x AC => AC = 100 

Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC. 
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có: 
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45 
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80

20 tháng 9 2017

(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5

13 tháng 4 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

15 tháng 6 2015

Đặt \(\frac{AB}{BC}=\frac{3}{5}=x\Rightarrow AB=3x;BC=5x\)

Tam giác ABC vuông tại A, theo py ta go:

                           \(AB^2+AC^2=BC^2\Rightarrow9x^2+144=25x^2\Rightarrow16x^2=144\Leftrightarrow x^2=9\)

=> X = 3 ; AB = 3x = 3.3=9 ; BC= 5x = 5.3 = 15

TAm giac ABC vuông tại A theo hệ thức lượng 

                           AH.BC = AB.AC => AH=  (AB.AC)/BC =  (9.12)/15 = 7,2cm

                          AB^2 = BC . BH => BH = AB^2 /BC = 9^2/15 = 5,4

                          =>  HC = BC - HB = 15 - 5,4 = 9,6cm

VẬY AH = 7,2 ; BH = 5,4;CH = 9,6 

 

1 tháng 8 2018

Lm sao 16x^2=144 ra x^2=9 vậy bạn

14 tháng 6 2017

Gọi tam giác vuông đó là tam giác ABC (góc BAC = 900),

\(\dfrac{AB}{AC}=\dfrac{3}{4}\&BC=125\left(cm\right)\) , gọi \(AH\perp BC=\left\{H\right\}\)

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\Leftrightarrow AB=AC\dfrac{3}{4}\left(1\right)\)

Áp dụng định lí Py-ta-go vào tam giác vuông ABC, có:

\(AB^2+AC^2=BC^2\left(2\right)\)

Thay (1) vào (2) ta được:

\(\left(\dfrac{3}{4}AC\right)^2+AC^2=BC^2\Leftrightarrow AC^2\dfrac{9}{16}+AC^2=BC^2\Leftrightarrow AC^2\dfrac{25}{16}=BC^2\)

Mà BC = 125cm

\(\Rightarrow AC^2\dfrac{25}{16}=125^2\Leftrightarrow AC^2=10000\Leftrightarrow AC=100\left(cm\right)\)

Thay AC = \(100\) vào (1) ta được:

\(AB=\dfrac{3}{4}.100=75\left(cm\right)\)

Ta lại có: \(AB^2=BC.BH\) (định lí 1)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{75^2}{125}=45\left(cm\right)\)

mà BH + CH = BC \(\Rightarrow CH=BC-BH=125-45=80\left(cm\right)\)

Vậy AB = 75cm, AC = 100cm, BH = 45cm, CH = 80cm