Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC và ΔCDM có
\(\widehat{ABC}=\widehat{CDM}\)(hai góc so le trong, MD//AB)
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔCDM(g-g)
Tam giác ABM có :
M là trung điểm của AB nên AM = MB ( 1 )
N là trung điểm của AC nên AN = NC ( 2 )
Từ ( 1 ) và ( 2 ) suy ra MN // BC
\(\Rightarrow MN=\frac{1}{2}BC\Rightarrow MN=\frac{1}{2}.6=3\left(cm\right)\)
Vì BM = MN = NC ( gt )
\(\Rightarrow BM=3\left(cm\right)\)P/s hình như bài này mình làm rồi thì phải
a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1.5}{6}=\dfrac{1}{4}\)
\(\dfrac{AN}{AC}=\dfrac{AC-CN}{AC}=\dfrac{4-3}{4}=\dfrac{1}{4}\)
Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)
Xét ΔABC có
\(M\in AB\)(gt)
\(N\in AC\)(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)(cmt)
Do đó: MN//BC(Định lí Ta lét đảo)
Lời giải:
a) Ta có:
{ME∥ACAB⊥AC⇒ME⊥AB⇒∠MEA=900
{MF∥ABAB⊥AC⇒MF⊥AC⇒∠MFA=900
Tam giác ABC vuông tại A nên ∠EAF=900
Tứ giác AFME có 3 góc ∠MEA=∠MFA=∠EAF=900 nên là hình chữ nhật.
b)
Vì ME∥AC,MF∥AB nên áp dụng định lý Thales ta có:
MEAC=BMBC;MFAB=CMBC
Chia hai vế: ⇒MEMF.ABAC=BMCM
Vì AFME là hình chữ nhật (cmt) nên để nó là hình vuông cần có ME=MF
⇔MEMF=1⇔ABAC=BMCM
⇔ABAB+AC=BMBM+CM=BMBC
Vậy điểm M nằm trên BC sao cho BMBC=ABAB+AC thì AFME là hình vuông.
a. Do ME // AC nên \(\frac{ME}{AC}=\frac{BM}{BC}\); MF // AB nên \(\frac{MF}{AB}=\frac{MC}{BC}\)
Từ đó suy ra \(\frac{ME}{AC}+\frac{MF}{AB}=\frac{BM+MC}{BC}=1\) không đổi.
b. Gọi \(\frac{ME}{AC}=t\Rightarrow\frac{MF}{AB}=1-t\Rightarrow S_{ABC}=\frac{a^2}{t^2}=\frac{b^2}{\left(1-t\right)^2}\)
\(\Rightarrow\frac{a}{t}=\frac{b}{1-t}\Rightarrow a\left(1-t\right)=bt\Rightarrow t=\frac{a}{a+b}\Rightarrow t^2=\frac{a^2}{\left(a+b\right)^2}\Rightarrow S_{ABC}=\frac{a^2}{t^2}=\left(a+b\right)^2.\)
c. \(S_{AEMF}=S_{ABC}-S_{BME}-S_{CMF}=\left(a+b\right)^2-a^2-b^2\)
\(=2ab\le a^2+b^2\)
Dấu bằng xảy ra khi a = b, tức là M là trung điểm BC.
AM = 4 ; MC = 8/3 ; 25/3