Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: OI+IB=OB
=>OI=OB-IB
=>\(OI=R-r\)
=>Hai đường tròn (O) và (I) tiếp xúc trong với nhau tại B
b: Ta có: ΔODE cân tại O
mà OH là đường cao
nên H là trung điểm của DE
Xét tứ giác ADCE có
H là trung điểm chung của AC và DE
=>ADCE là hình bình hành
Hình bình hành ADCE có AC\(\perp\)DE
nên ADCE là hình thoi
c: Xét (I) có
ΔCKB nội tiếp
CB là đường kính
Do đó: ΔCKB vuông tại K
=>CK\(\perp\)KB tại K
=>CK\(\perp\)DB tại K
Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE\(\perp\)BE tại E
Ta có: ADCE là hình thoi
=>AE//CD
mà AE\(\perp\)EB
nên CD\(\perp\)EB
Xét ΔDEB có
BH,DC là các đường cao
BH cắt DC tại C
Do đó: C là trực tâm của ΔDEB
=>EC\(\perp\)DB
mà CK\(\perp\)DB
và EC,CK có điểm chung là C
nên E,C,K thẳng hàng
d:
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
Xét tứ giác DHCK có \(\widehat{DHC}+\widehat{DKC}=90^0+90^0=180^0\)
nên DHCK là tứ giác nội tiếp
=>\(\widehat{HKC}=\widehat{HDC}\)
mà \(\widehat{HDC}=\widehat{ADH}\)(DH là phân giác của góc ADC do ADCE là hình thoi)
nên \(\widehat{HKC}=\widehat{ADH}\)
mà \(\widehat{ADH}=\widehat{ABD}\left(=90^0-\widehat{DAB}\right)\)
nên \(\widehat{HKC}=\widehat{ABD}\)
Ta có: IC=IK
=>ΔICK cân tại I
=>\(\widehat{ICK}=\widehat{IKC}\)
\(\widehat{HKI}=\widehat{HKC}+\widehat{IKC}\)
\(=\widehat{ABD}+\widehat{ICK}\)
\(=\widehat{KBC}+\widehat{KCB}=90^0\)
=>HK\(\perp\)KI tại K
=>HK là tiếp tuyến tại K của (I)
a) Xét tam giác ABC có:
\(AB^2+AC^2=8^2+6^2=100=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A
\(\Rightarrow AB\perp AC\)
Mà \(A\in\left(C;CA\right)\)
=> AB là tiếp tuyến đường tròn (C)
b) Ta có: AB là tiếp tuyến, C là tâm
=> BC cắt đường tròn
Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
Áp dụng HTL: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{9}+\dfrac{1}{16}=\dfrac{25}{144}\)
\(\Rightarrow AH^2=\dfrac{144}{25}\Rightarrow AH=\dfrac{12}{5}\)
Áp dụng HTL: \(HC=\dfrac{AC^2}{BC}=3,2\left(cm\right)\)
Vậy \(\dfrac{S_{ABC}}{S_{HAC}}=\dfrac{AB\cdot AC}{AH\cdot HC}=\dfrac{12}{3,2\cdot2,4}=\dfrac{25}{16}\)
A,B nằm trên đường tròn
M,C nằm ngoài đường tròn