K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

Xét tập B={ 1;4;5;6;7;8}, ta có B không chứa số 3.

X là một tập con của A thỏa yêu cầu bài toán khi và chỉ khi X \ {2} là một tập con của B  . Do đo, số tập con của A thỏa yêu cầu bài toán bằng số tập con của B và bằng  26 = 64

Chọn  A.

11 tháng 11 2016

có 18 số cần tìm.

gọi số cần tìm là abc

xét a=1, c có 3 cách chọn(0,2,8), b có 4 cách => có 3*4=12

xét abc<270, a=2, nếu c=8 thì b có 3 cách, nếu c=0 thì b có 2 cách => có 1*1*3+1*1*2=6

xét 270 đến 278, ko có số thảo mãn

26 tháng 3 2017

Xét số    được lập từ các chữ số thuộc tập A.

Vì x lẻ nên e {1; 3; 5; 7} , suy ra có 4 cách chọn e. Bốn chữ số còn lại được chọn từ 7 chữ số của tập A \ {e} nên có   cách

Suy ra, có  4.840=3360 số lẻ gồm năm chữ số khác nhau.

Mà số x bắt đầu bằng 123 có   số.

Vậy số x thỏa yêu cầu bài toán là :3360- 20=3340  số.

Chọn A.

27 tháng 9 2019

12 tháng 4 2019

13 tháng 1 2017

1 tháng 6 2018

Đáp án D

NV
21 tháng 3 2023

a.

\(u_5=18\Rightarrow u_1+4d=18\) (1)

\(4S_n=S_{2n}\Rightarrow\dfrac{4n\left(2u_1+\left(n-1\right)d\right)}{2}=\dfrac{2n\left(2u_1+\left(2n-1\right)d\right)}{2}\)

\(\Rightarrow4u_1+2\left(n-1\right)d=2u_1+\left(2n-1\right)d\)

\(\Rightarrow2u_1-d=0\Rightarrow d=2u_1\) (2)

Thế (2) vào (1):

\(\Rightarrow9u_1=18\Rightarrow u_1=2\Rightarrow d=4\)

b.

Do a;b;c là 3 số hạng liên tiếp của 1 CSC công sai 2 nên: \(\left\{{}\begin{matrix}b=a+2\\c=a+4\end{matrix}\right.\)

Khi tăng số thứ nhất thêm 1, số thứ 2 thêm 1 và số thứ 3 thêm 3 được 1 cấp số nhân nên:

\(\left(a+1\right)\left(c+3\right)=\left(b+1\right)^2\)

\(\Rightarrow\left(a+1\right)\left(a+7\right)=\left(a+3\right)^2\)

\(\Rightarrow a^2+8a+7=a^2+6a+9\)

\(\Rightarrow a=1\Rightarrow b=3\Rightarrow c=5\)

8 tháng 12 2017

Số có 4 chữ số có dạng

Số phần tử của không gian mẫu: n(S)=9.9.8.7=4536.

Gọi A: “ tập hợp các số tự nhiên có 4 chữ số phân biệt và lớn hơn 2500.”

TH1: a>2

Chọn a: có 7 cách chọn.

Chọn b: có 9 cách chọn.

Chọn c: có 8 cách chọn.

Chọn d: có 7 cách chọn.

Vậy trường hợp này có:7.9.8.7=3528 .

 

TH2: a=3; b>5

Chọn a: có 1 cách chọn.

Chọn b: có 4 cách chọn.

Chọn c: có 8cách chọn.

Chọn d: có 7 cách chọn.

Vậy trường hợp này có: 1.4.8.7=224  (số).

 

TH3: a=2; b=5; c>0

Chọn a: có 1 cách chọn.

Chọn b: có1  cách chọn.

Chọn c: có 7 cách chọn.

Chọn d: có 7 cách chọn.

Vậy trường hợp này có: 1.1.7.7=49(số).

 

TH4. a=2; b=5; c=0 ;d>0

Chọn a: có 1 cách chọn.

Chọn b: có 1 cách chọn.

Chọn  c: có 1 cách chọn.

Chọn d: có 7 cách chọn.

Vậy trường hợp này có: 1.1.1.7=7(số).

Như vậy: n(A)=3528+224+49+7=3808

Chọn C.