K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2020

1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)

 ~~~~~~~~~ Bài làm ~~~~~~~~~

A B C O I K H Q D

Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))

\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)

Ta lại có: \(BD\perp HK\)

\(\Rightarrow BD\) là đường trung trực của \(HK\)

\(\Rightarrow\Delta IHK\) cân tại \(I\)

\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)

Lại có:\(\widehat{DKO}=\widehat{HAO}\)\(\Delta OKA\) cân tại \(O\))

Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)

\(\Rightarrow\widehat{KIO}=90^0\)

\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)

(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )

24 tháng 1 2020

Ủa bạn ơi sao phụ nhau? Dòng đầu ấy

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
8 tháng 3 2018
là câu a
8 tháng 3 2018

Ta có: ^BIC = 90o (do chắn đk BC) 
mà ^OMD = 90o (do DE _|_AB) 
=> tg BDMI nội tiếp 

17 tháng 11 2023

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

Xét ΔCHA vuông tại H có \(sinA=\dfrac{CH}{CA}\)

=>\(CH=CA\cdot sinA\)

Xét ΔCHB vuông tại H có \(sinB=\dfrac{CH}{CB}\)

=>\(CH=CB\cdot sinB\)

=>\(CH=CB\cdot cosA\)

\(CA\cdot CB\cdot sinA\cdot cosA\)

\(=CH\cdot CH=CH^2\)

b: ΔACD vuông tại C

mà CI là đường trung tuyến

nên IA=IC=ID

Xét ΔIAO và ΔICO có

IA=IC

AO=CO

IO chung

Do đó: ΔIAO=ΔICO

=>\(\widehat{ICO}=\widehat{IAO}=90^0\)

=>IC là tiếp tuyến của (O)

c: ΔIAO=ΔICO

=>\(\widehat{AOI}=\widehat{COI}\)

=>\(\widehat{AOC}=2\cdot\widehat{IOC}\)

Xét (O) có

KB,KC là tiếp tuyến

Do đó: KB=KC và OK là phân giác của góc COB

=>\(\widehat{COB}=2\cdot\widehat{COK}\)

\(\widehat{AOC}+\widehat{COB}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{IOC}+2\cdot\widehat{COK}=180^0\)

=>\(\widehat{IOC}+\widehat{COK}=90^0\)

=>\(\widehat{IOK}=90^0\)

Xét ΔIOK vuông tại O có OC là đường cao

nên \(CI\cdot CK=OC^2\)

=>\(AI\cdot BK=R^2\)

10 tháng 5 2018

O B C A K I H M P Q

1) Xét đường tròn (O) có 2 điểm B và C nằm trên đường tròn, 2 tiếp tuyến tại B và C cắt tại A

=> AB=AC => \(\Delta\)ABC cân tại A (đpcm).

2) Xét tứ giác BIMK: ^MKB=^MIB=900 . => ^MKB+^MIB=1800 => Tứ giác BIMK nội tiếp đường tròn

Tương tự ta được tứ giác CHMI nội tiếp đường tròn.

3) Ta thấy: Tứ giác BIMK nội tiếp đường tròn => ^KBI + ^KMI =1800

hay ^ABC + ^KMI = 1800 (1)

Tương tự: ^ACB + ^IMH = 1800 (2)

Từ (1) và (2) kết hợp với ^ABC=^ACB (Do \(\Delta\)ABC cân tại A) => ^KMI=^IMH

Tứ giác CHMI nội tiếp => ^MIH=^MCH

Dễ thấy ^MCH=^MBC => ^MIH=^MBC (=^MBI). Mà ^MBI=^MKI (Tứ giác BIMK nt đường tròn)

=> ^MIH=^MKI

Xét \(\Delta\)IMH và \(\Delta\)KMI: ^MIH=^MKI; ^IMH=^KMI (cmt) => \(\Delta\)IMH ~ \(\Delta\)KMI (g.g)

Suy ra \(\frac{MI}{MK}=\frac{MH}{MI}\Rightarrow MI^2=MH.MK\)(đpcm).

4) Ta có: ^KBM = ^MCB. Mà ^KBM=^KIM => ^KIM=^MCB

Tương tự: ^MIH=^MBC

Từ đó: ^KIM + ^MIH = ^MCB + ^MBC => ^PIQ = 1800 - ^BMC = 1800 - ^PMQ

=> ^PIQ + ^PMQ = 1800 => Tứ giác MPIQ nội tiếp đường tròn => ^MIQ=^MPQ hay ^MIH=^MPQ

Mà ^MIH = ^MKI = ^MBI (cmt) => ^MIH=^MBI.

Lại có 2 góc trên nằm ở vị trí đồng vị => PQ//BC. Mà MI vuông góc với BC

=> PQ vuông góc MI (đpcm).