K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

a) cm tg ABM = tg ACM moi dung phai ko ban

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

góc BAC=90 độ

=>ABDC là hình chữ nhật

=>ΔACD vuông tại C

b: Xet ΔKCD vuông tại C và ΔKAB vuông tại A có

KC=KA

CD=AB

=>ΔKCD=ΔKAB

=>KD=KB

 

a) Xét ΔABM và ΔFCM có 

AM=FM(gt)

\(\widehat{AMB}=\widehat{FMC}\)(hai góc đối đỉnh)

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔFCM(c-g-c)

b) Xét ΔBMF và ΔCMA có 

BM=CM(M là trung điểm của BC)

\(\widehat{BMF}=\widehat{CMA}\)(hai góc đối đỉnh)

FM=AM(gt)

Do đó: ΔBMF=ΔCMA(c-g-c)

nên \(\widehat{FBM}=\widehat{ACM}\)(hai góc tương ứng)

mà \(\widehat{FBM}\) và \(\widehat{ACM}\) là hai góc ở vị trí so le trong

nên BF//AC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: ΔABM=ΔFCM(cmt)

nên \(\widehat{ABM}=\widehat{FCM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{FCM}\) là hai góc ở vị trí so le trong

nên AB//CF(Dấu hiệu nhận biết hai đường thẳng song song)