Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ΔABC vuông cân tại A nên ∠ B = ∠ C = 45 0
Vì ΔBHE vuông tại H có ∠ B = 45 0 nên ΔBHE vuông cân tại H.
Suy ra HB = HE
Vì ΔCGF vuông tại G, có ∠ C = 45 0 nên ΔCGF vuông cân tại G
Suy ra GC = GF
Ta có: BH = HG = GC (gt)
Suy ra: HE = HG = GF
Vì EH // GF (hai đường thẳng cũng vuông góc với đường thắng thứ ba) nên tứ giác HEFG là hình bình hành (vì có một cặp cạnh đối song song bằng nhau);
Lại có ∠ (EHG) = 90 0 nên HEFG là hình chữ nhật.
Mà EH = HG (chứng minh trên).
Vậy HEFG là hình vuông.
Tam giác vuông FGC có \(\widehat{C}=45^0\) nên là tam giác vuông cân. Do đó FG = GC
1:
ΔABC vuông cân tại A
=>\(\widehat{ABC}=\widehat{ACB}=45^0\)
EH\(\perp\)BC tại H
=>EH\(\perp\)HB tại H
=>ΔEHB vuông tại H
Xét ΔHEB vuông tại H có \(\widehat{HBE}=45^0\)
nên ΔHEB vuông cân tại H
FG\(\perp\)BC tại G
=>FG\(\perp\)GC tại G
=>ΔFGC vuông tại G
Xét ΔFCG vuông tại G có \(\widehat{GCF}=45^0\)
nên ΔFCG vuông cân tại G
2: EH\(\perp\)BC
FG\(\perp\)BC
Do đó: EH//FG
EH=HB
HB=HG=GC
GF=GC
Do đó; EH=HB=GH=CG=GF
Xét tứ giác EHGF có
EH//FG
EH=FG
Do đó: EHFG là hình bình hành
Hình bình hành EHFG có \(\widehat{EHG}=90^0\)
nên EHFG là hình chữ nhật
Hình chữ nhật EHFG có GH=GF
nên EHFG là hình vuông
\(\Delta\) vuông \(FGC\) có \(\widehat{C}=45^0\left(gt\right)\)
=> \(\Delta FGC\) vuông cân tại G.
=> \(FG=GC.\)
Chúc bạn học tốt!
a, Xét tam giác AHE và ABH có :
\(+,\widehat{AEH}=\widehat{AHB}=90^0\)
\(+,\widehat{HAB}chung\)
Vậy tam giác \(AHE~ABH\left(g.g\right)\)
b,
Theo hệ thức lượng trong tam giác vuông ta có :
\(AH^2=AE.AB=AF.AC\)
Vậy \(\frac{AE}{AC}=\frac{AF}{AB}\left(1\right)\)
Xét tam giác AEF và ACB có :
\(+,\)góc A chung
\(+,\left(1\right)\)
\(\Rightarrow\Delta AEF~ACB\left(c.g.c\right)\)
c, Tự làm nhé