Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1}{4}\)
\(\dfrac{AN}{AC}=\dfrac{1.5}{6}=\dfrac{1}{4}\)
Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)\(\left(=\dfrac{1}{4}\right)\)
Xét ΔABC có
M\(\in\)AB(gt)
N\(\in\)AC(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)
Do đó: MN//BC(Định lí Ta lét đảo)
a: AN+CN=AC
=>AN=20-15=5cm
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
b: Xét ΔAMN và ΔNPC có
góc AMN=góc NPC(=góc B)
góc ANM=góc NCP
=>ΔAMN đồng dạng với ΔNPC
a) Ta có: AM+MB=AB(M nằm giữa hai điểm A và B)
AN+NC=AC(N nằm giữa A và C)
mà MB=NC(gt)
và AB=AC(ΔABC cân tại A)
nên AM=AN
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
Ta có: ΔAMN cân tại A(cmt)
nên \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
b) Ta có: \(\widehat{AMN}=\widehat{ABC}\)(cmt)
mà hai góc này là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Xét tứ giác MNBC có MN//BC(cmt)
nên MNBC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)
Hình thang MNBC(MN//BC) có \(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)
nên MNBC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
c) Xét ΔAMN có
E là trung điểm của AM(gt)
F là trung điểm của AN(gt)
Do đó: EF là đường trung bình của ΔAMN(Định nghĩa đường trung bình của hình thang)
Suy ra: EF//MN và \(EF=\dfrac{MN}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà MN//BC(cmt)
nên EF//BC(3)
Xét hình thang MNCB(MN//CB) có
H là trung điểm của MB(gt)
G là trung điểm của NC(gt)
Do đó: HG là đường trung bình của hình thang MNCB(Định nghĩa đường trung bình của hình thang)
Suy ra: HG//MN//BC và \(HG=\dfrac{MN+BC}{2}\)(Định lí 4 về đường trung bình của hình thang)(4)
Từ (3) và (4) suy ra EF//HG
Ta có: HG//BC(cmt)
nên \(\widehat{EHG}=\widehat{ABC}\) và \(\widehat{FGH}=\widehat{ACB}\)(Các cặp góc đồng vị)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{EHG}=\widehat{FGH}\)
Xét tứ giác EFGH có EF//HG(cmt)
nên EFGH là hình thang có hai đáy là EF và HG(Định nghĩa hình thang)
Hình thang EFGH(EF//HG) có \(\widehat{EHG}=\widehat{FGH}\)(cmt)
nên EFGH là hình thang cân(Dấu hiệu nhận biết hình thang cân)
a) Vẽ MH \(⊥\)BC ; NK \(⊥\)BC
tam giác MBH = tam giác NCK ( cạnh huyền, góc nhọn )
suy ra BH = CK
b) tam giác ABN = tam giác ACM ( c.g.c )
suy ra BN = CM
Dễ thấy MN // BC
suy ra MN = HK ( tính chất đoạn chắn )
Ta có : BN > BK ; CM > CH ( quan hệ giữa đường xiên và đường vuông góc )
Vậy BN + CM > BK + CH hay BN + BN > ( BH + HK ) + CH
2BN > ( BH + CH ) + HK ; 2BN > BC + MN \(\Rightarrow BN>\frac{BC+MN}{2}\)
a: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
b: AM+MB=AB
AN+NC=AC
mà AM=AN và AB=AC
nên MB=NC
c: Đề sai rồi bạn