Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}\Rightarrow\dfrac{10a+b}{10b+c}=\dfrac{a}{c}=\dfrac{9a+b}{10b}\\ =\dfrac{111...11\left(9a+b\right)}{111...11.10b}\)(có n chữ số 1 trong 111...11)
\(\dfrac{999...99a+111...11b}{111.110b}\\ =\dfrac{999...99a+a+111...11}{111.10b+c}=\dfrac{abbb...bb}{bbb...bc}=\dfrac{a}{c}\)(đpcm)
Có : \(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}\Rightarrow\dfrac{10a+b}{10b+c}=\dfrac{a}{c}=\dfrac{9a+b}{10b}\)( áp dụng dãy tỉ số bằng nhau)
\(=\dfrac{111...11.\left(9a+b\right)}{111..11.10b}\)(có n chữ số 1 trong số 111..111)
\(\dfrac{999..99a+111..11b}{111..110b}=\dfrac{a}{c}=\dfrac{999..99a+a+111..11b}{111..110b+c}=\dfrac{100...000a+111...11b}{111..110b+c}\)=\(\dfrac{\overline{abbb...bb}}{\overline{bbb..bbc}}=\dfrac{a}{c}\)
b: Xét tứ giác ABNC có
M là trung điểm của AN
M là trung điểm của BC
Do đó: ABNC là hình bình hành
Suy ra: AC//BN
Với số lượng chữ b ở tử và mẫu như nhau, ta có:
(abbb...b) / (bbb...bc)
= (a/c) . (bb...b / bb...b)
= (a/c) . 1
= a/c (đpcm)
Xin phép được giải bài mà chính bản thân hỏi :v
Có \(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}\Rightarrow\frac{a}{c}=\frac{10a+b}{10b+c}=\frac{9a+b}{10b}=\frac{9ak+bk}{10bk}\) \(\left(k=11...1\right)\)(n chữ số 1)
\(\Rightarrow\frac{a}{c}=\frac{9a\cdot11...1+b\cdot11...1}{10b\cdot11...1}=\frac{99...9\cdot a+b\cdot11...1}{b\cdot11...10}\) (n chữ số 9)
\(=\frac{\left(100..0-1\right)\cdot a+\overline{bb...b}}{\overline{bb...b0}}\) (n chữ số 0) (n chữ số b)
\(=\frac{\overline{a00...0}-a+\overline{bb...0}}{\overline{bb...b0}}\)
\(=\frac{\overline{a00...0}+\overline{bb...b}}{\overline{bb...b0}+c}=\frac{\overline{abb...b}}{\overline{bb...bc}}\) (đpcm)