K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)

Ta có \(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\)

\(\Leftrightarrow a^2cd-b^2cd=c^2ab-d^2ab=0\)

\(\Leftrightarrow ad.ac-bc.bd-ca.bc+ad.bd=0\) (1)

Thay \(ad=bc\) ta được

\(\left(1\right)\Leftrightarrow bc.ac-bc.bd-ca.bc+bc.bd=0\)

\(\Leftrightarrow\left(bc.ac-ca.bc\right)+\left(bc.bd-bc.bd\right)=0\) (luôn đúng)

Vậy \(\dfrac{a}{b}=\dfrac{c}{d}\) thì \(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\) (đpcm)

Bài 1: 
Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\)

\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}\)

Do đó: \(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)

c: \(\dfrac{2a+3b}{2a-3b}=\dfrac{2\cdot bk+3b}{2\cdot bk-3b}=\dfrac{2k+3}{2k-3}\)

\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{2k+3}{2k-3}\)

Do đó: \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)

12 tháng 2 2020

Ta có: \(\frac{a}{b}\)<\(\frac{c}{d}\)-->ad<bc (b,d>0)

Gỉa sử \(\frac{a}{b}\)<\(\frac{ab+cd}{b^2+d^2}\) đúng

a (b2+d2)<b(ab+cd) (b,d>0)

<=> ab2+ad2<ab2+bcd

<=> ad2-bcd<0

<=> d(ad-bc)<0 (*)

mà d>0; ad<bc(cmt)--> ad-bc<0

nên (*) đúng.

cm tiếp vế kia cũng như thế rồi kết luận

11 tháng 2 2022

3)undefined

NV
13 tháng 2 2022

1.

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với \(\dfrac{2}{3}\), không mất tính tổng quát, giả sử đó là b và c

\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\ge0\)

Mặt khác \(0\le a\le1\Rightarrow1-a\ge0\)

\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\left(1-a\right)\ge0\)

\(\Leftrightarrow-abc\ge\dfrac{4a}{9}+\dfrac{2b}{3}+\dfrac{2c}{3}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}\)

\(\Leftrightarrow-abc\ge-\dfrac{2a}{9}+\dfrac{2}{3}\left(a+b+c\right)-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}=-\dfrac{2a}{9}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc+\dfrac{8}{9}\)

\(\Leftrightarrow-2abc\ge-\dfrac{4a}{9}-\dfrac{4ab}{3}-\dfrac{4ac}{3}-2bc+\dfrac{16}{9}\)

\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{ab}{3}-\dfrac{ac}{3}-bc+\dfrac{16}{9}\)

\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(b+c\right)-bc+\dfrac{16}{9}\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(2-a\right)-\dfrac{\left(b+c\right)^2}{4}+\dfrac{16}{9}\)

\(\Rightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}+\dfrac{a^2}{3}-\dfrac{2a}{3}-\dfrac{\left(2-a\right)^2}{4}+\dfrac{16}{9}\)

\(\Rightarrow ab+bc+ca-2abc\ge\dfrac{a^2}{12}-\dfrac{a}{9}+\dfrac{7}{9}=\dfrac{1}{12}\left(a-\dfrac{2}{3}\right)^2+\dfrac{20}{27}\ge\dfrac{20}{27}\)

\(\Rightarrow ab+bc+ca\ge2abc+\dfrac{20}{27}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\)

6 tháng 12 2017

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=t\Leftrightarrow\left\{{}\begin{matrix}a=bt\\c=dt\end{matrix}\right.\)

a) \(\left\{{}\begin{matrix}\dfrac{ab}{cd}=\dfrac{b^2t}{d^2t}=\dfrac{b^2}{d^2}\\\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2t^2+b^2}{d^2t^2+d^2}=\dfrac{b^2\left(t^2+1\right)}{d^2\left(t^2+1\right)}=\dfrac{b^2}{d^2}\end{matrix}\right.\Rightarrowđpcm\)

b)\(\left\{{}\begin{matrix}\dfrac{ac}{bd}=\dfrac{t^2bd}{bd}=t^2\\\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2t^2+d^2t^2}{b^2+d^2}=\dfrac{t^2\left(b^2+d^2\right)}{b^2+d^2}\end{matrix}\right.\Rightarrowđpcm\)

8 tháng 11 2018

1) \(\dfrac{x}{3}=\dfrac{y}{4}=t\Leftrightarrow\left\{{}\begin{matrix}x=3t\\y=4t\end{matrix}\right.\)

ta có \(x.y^2=324\Leftrightarrow3t.\left(4t\right)^2=324\)

\(\Leftrightarrow t^3=\dfrac{27}{4}\)

\(\Leftrightarrow t=\dfrac{3}{\sqrt[3]{4}}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3.\dfrac{3}{\sqrt[3]{4}}=\dfrac{9}{\sqrt[3]{4}}\\y=4.\dfrac{3}{\sqrt[3]{4}}=\dfrac{12}{\sqrt[3]{4}}\end{matrix}\right.\)

2) \(2^{x+1}.3^y=2^{2x}.3^x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

3) \(\dfrac{a}{b}=\dfrac{c}{d}\)

áp dụng dãy tỉ số = nhau ta có

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\)

\(\Leftrightarrow\dfrac{a^4}{b^4}=\dfrac{c^4}{d^4}=\left(\dfrac{a-c}{b-d}\right)^4\left(1\right)\)

\(\dfrac{a^4}{b^4}=\dfrac{c^4}{d^4}=\dfrac{a^4+c^4}{b^4+c^4}\left(2\right)\)

từ (1)(2) suy ra đpcm

4) \(B=\dfrac{27^{15}.5^3.8^4}{25^2.81^{11}.2^{11}}=\dfrac{\left(3^3\right)^{15}.5^3.\left(2^3\right)^4}{\left(5^2\right)^2.\left(3^4\right)^{11}.2^{11}}=\dfrac{3^{45}.5^3.2^{12}}{5^4.3^{44}.2^{11}}=\dfrac{3.2}{5}=\dfrac{6}{5}\)

Câu 1: 

Gọi M là trung điểm của AC

AM=AC/2=2

\(BM=\sqrt{3^2+2^2}=\sqrt{13}\)

\(\left|\overrightarrow{AB}+\overrightarrow{CB}\right|=\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=2\cdot BM=2\sqrt{13}\)

Câu 6:

\(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{DE}+\overrightarrow{EF}+\overrightarrow{FA}\)

\(=\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{EA}=\overrightarrow{AE}+\overrightarrow{EA}=\overrightarrow{0}\)

21 tháng 8 2018

\(\dfrac{a}{b}=\dfrac{c}{d}\rightarrow\dfrac{5a^5}{5b^5}=\dfrac{c^5}{d^5}=\dfrac{5a^5+c^5}{5b^5+d^5}\)

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\dfrac{a^5}{b^5}=\dfrac{c^5}{d^5}=\dfrac{\left(a+c\right)^5}{\left(b+d\right)^5}\)

nên ta có

\(\dfrac{5a^5+c^5}{5b^5+d^5}=\dfrac{\left(a+c\right)^5}{\left(b+d\right)^5}\)

25 tháng 8 2018

Cảm ơn bạn yeu

13 tháng 11 2016

Câu 1:
Đặt \(A=1.2+2.3+3.4+99.100\)

\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100\left(101-98\right)\)

\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(\Rightarrow3A=99.100.101\)

\(\Rightarrow A=99.100.101:3\)

\(\Rightarrow A=33.100.101\)

\(\Rightarrow A=333300\)

Vậy A = 333300

Câu 2:
\(\left(2x-1\right)^4=81\)

\(\Rightarrow2x-1=\pm3\)

+) \(2x-1=3\Rightarrow x=2\)

+) \(2x-1=-3\Rightarrow x=-1\)

Vậy \(x\in\left\{2;-1\right\}\)

Câu 3:

C1: Giải:

Ta có: \(\frac{b}{a}=\frac{d}{c}\Rightarrow\frac{a}{b}=\frac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

\(\Rightarrow\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

\(\Rightarrow\frac{a+c}{a-c}=\frac{b+d}{b-d}\left(đpcm\right)\)

C2: Đặt = k