K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2015

Ta có: \(\frac{13}{38}>\frac{13}{39}=\frac{1}{3}\)

           \(\frac{-12}{-37}=\frac{12}{37}\frac{12}{37}hay\frac{13}{38}>\frac{-12}{-37}\)

7 tháng 9 2015

\(\text{Ta thấy : }\frac{13}{38}>\frac{13}{39}=\frac{1}{3}\)

                     \(\frac{-12}{-37}\frac{-12}{-37}\)

21 tháng 10 2018

\(x^2=yz\Rightarrow\frac{x}{y}=\frac{z}{x}\)

\(y^2=xz\Rightarrow\frac{x}{y}=\frac{y}{z}\)

\(\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)

 Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

  \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}\)

Do x, y, z \(\ne\)\(\Rightarrow\frac{x+y+z}{y+z+x}=1\)

                          \(\Rightarrow\hept{\begin{cases}\frac{x}{y}=1\\\frac{y}{z}=1\\\frac{z}{x}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)

\(\Rightarrow\frac{\left(x+y+z\right)^{999}}{x^{222}.y^{333}.z^{444}}=\frac{\left(3x\right)^{999}}{x^{222}.x^{333}.x^{444}}=\frac{3^{999}.x^{999}}{x^{999}}=3^{999}\)

Vậy.............

21 tháng 10 2018

Giả sử một trong 3 số x, y, z bằng 0 thì ta chứng minh được hai số còn lại bằng 0 (trái với x + y + z ≠ 0)

Do đó x, y, z khác 0

Ta có: \(x^2=yz\Leftrightarrow z=\frac{x^2}{y}\left(1\right)\)

\(y^2=xz\Leftrightarrow z=\frac{y^2}{x}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x^2}{y}=\frac{y^2}{x}\Leftrightarrow x^3=y^3\Leftrightarrow x=y\)

Thay x = y vào \(x^2=yz\Rightarrow y^2=yz\Leftrightarrow y^2-yz=0\Leftrightarrow y\left(y-z\right)=0\)

=> y = 0 hoặc y - z = 0

Do y khác 0 nên y - z = 0 <=> y = z <=> x = y = z

Thay x = y = z vào A ta có:

\(A=\frac{\left(x+y+z\right)^{999}}{x^{222}.y^{333}.z^{444}}=\frac{\left(x+x+x\right)^{999}}{x^{222}.x^{333}.x^{444}}=\frac{\left(3x\right)^{999}}{x^{999}}=\frac{3^{999}x^{999}}{x^{999}}=3^{999}\)

DD
7 tháng 9 2021

\(\frac{x-1}{5}=\frac{y+4}{-3}=\frac{z-2}{1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x-1}{5}=\frac{y+4}{-3}=\frac{z-2}{1}=\frac{\left(x-1\right)-5\left(y+4\right)+\left(z-2\right)}{5-5.\left(-3\right)+1}=\frac{-5}{21}\)

\(\Leftrightarrow\hept{\begin{cases}x-1=-\frac{5}{21}.5\\y+4=\frac{-5}{21}.\left(-3\right)\\z-2=-\frac{5}{21}.1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{4}{21}\\y=\frac{-23}{7}\\z=\frac{37}{21}\end{cases}}\)