K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2015

Mình lm tắt bạn tự hiểu nhé, ko hiểu chỗ nào thì hỏi mik

tam giác ADC= tam giác ABC (c.c.c)

=> A1=A2 (2 góc tg ứng)

=> AC là p/giác tam giác ADB                    (1)

Mà tam giác ABD cân do AD= AB ( giả thiết)         (2)

từ (1) và (2) => AC là trung trực tam giác ADB

=> AClà trung trực BD (đpcm)

10 tháng 7 2015

còn tính cái kia thì bạn lm theo hướng như sau

Vì tam giác ADC = tam giác ABC (cmt)

=> C1=C2= góc DCB :2 = 60 độ :2 = 30 độ

Còn A1=A2(cmt) => A1=A2=góc DAB:2 = 120 độ :2 = 60 độ 

Xét tam giác ABC có tổng 3 góc = 180 độ r trừ đi góc A2 và góc C2 vừa tìm ra góc B= 90 độ

Vì tam giác ADC = tam giác ABC (cmt)

=> góc B= góc D ( 2 góc tg ứng) => góc D= 90 độ

Vậy D=B=90 độ

19 tháng 2 2018

a) HS tự chứng minh

b) Sử dụng tổng bốn góc trong tứ giác và chú ý  B ^ = D ^

giúp mình bài này với!Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o a, Chứng minh AC là đường trung trực của BD.b, Tính góc B và góc D.Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=<C+<D2<C+<D2 và <AFB=<A+<B/2Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:a, △ABC và △EDC...
Đọc tiếp

giúp mình bài này với!

Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o 

a, Chứng minh AC là đường trung trực của BD.

b, Tính góc B và góc D.

Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=<C+<D2<C+<D2 và <AFB=<A+<B/2

Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:

a, △ABC và △EDC bằng nhau

b, AC là phân giác của góc A

Bài 5: Cho tứ giác ABCD biết số đo của các góc A,B,C,D tỉ lệ thuận với 5,8,13,10.

a, Tính số đo các góc của tứ giác ABCD.

b,Kéo dài hai cạnh AB và CD cắt nhau tại E, kéo dài hai cạnh AD và BC cắt nhau tại F. Hai tia phân giác của góc AED và góc AFB cắt nhau tại O. Phân giác góc AFB cắt cạnh CD VÀ AB lần lượt là M và N. CM: O là trung điểm đoạn MN.

1

Bài 1: 

a: Ta có: AB=AD

nên A nằm trên đường trung trực của BD(1)

Ta có: CB=CD
nên C nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AC là đường trung trực của BD

b: Xét ΔBAC và ΔDAC có 

AB=AD

AC chung

BC=DC

Do đó: ΔBAC=ΔDAC

Suy ra: \(\widehat{B}=\widehat{D}\)

=>\(\widehat{B}=\widehat{D}=\dfrac{200^0}{2}=100^0\)

giúp mình bài này với!Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o a, Chứng minh AC là đường trung trực của BD.b, Tính góc B và góc D.Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=\(\dfrac{ C+ D}{2}\) và <AFB=<A+<B/2Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:a, △ABC...
Đọc tiếp

giúp mình bài này với!

Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o 

a, Chứng minh AC là đường trung trực của BD.

b, Tính góc B và góc D.

Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=\(\dfrac{< C+< D}{2}\) và <AFB=<A+<B/2

Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:

a, △ABC và △EDC bằng nhau

b, AC là phân giác của góc A

Bài 5: Cho tứ giác ABCD biết số đo của các góc A,B,C,D tỉ lệ thuận với 5,8,13,10.

a, Tính số đo các góc của tứ giác ABCD.

b,Kéo dài hai cạnh AB và CD cắt nhau tại E, kéo dài hai cạnh AD và BC cắt nhau tại F. Hai tia phân giác của góc AED và góc AFB cắt nhau tại O. Phân giác góc AFB cắt cạnh CD VÀ AB lần lượt là M và N. CM: O là trung điểm đoạn MN.

  

1
10 tháng 7 2015

Mình lm tắt bạn tự hiểu nhé, ko hiểu chỗ nào thì hỏi mik

tam giác ADC= tam giác ABC (c.c.c)

=> A1=A2 (2 góc tg ứng)

=> AC là p/giác tam giác ADB                    (1)

Mà tam giác ABD cân do AD= AB ( giả thiết)         (2)

từ (1) và (2) => AC là trung trực tam giác ADB

=> AClà trung trực BD (đpcm)

 

18 tháng 7 2016

Tự vẽ hình nha

a) Có : AB=AD(gt)

=>  A\(\in\)đường trung trực của đoạn thẳng BD(1)

   Có:  CB=CD(gt)

=> C\(\in\)đường trung trực của đoạn thẳng BD(2)

 Từ 1,2 suy ra:

          A,C \(\in\)Đường trung trực của đoạn thẳng BD

=>     AC là đường trung trực của đoạn thẳng BD

b, Xét tam giác ABC và ADC có:

        AB=AD(gt)

         BC=DC(gt)

         AC: góc chung

=> tam giác ABC=ADC( c.c.c)

=> ^BAC=^DAC(2 góc tương ứng)

     ^BCA=^DCA(2 góc tương ứng)

    ^ABC=^ADC(2 góc tương ứng)

Có: ^BAD=^BAC+^DAC=100

=> ^BAC=^DAC=50

Lại có  ^BCD=^BAC+^DCA=60

=>  ^BAC=^DCA=30

   Xét tam giác ABC có: ^BAC+^ACB+^ABC=180

                            =>   ^ABC=180- ^ACB - ^BAC=180 -60-100=20

Vậy ^B = ^C = 20

Tích mink nha (^.^)

    

a. Dễ thấy AEM F là hình chữ nhật => AE = FM 
Dễ thấy tg DFM vuông cân tại F => FM = DF 
=> AE = DF => tg vuông ADE = tg vuông DCF ( AE = DF; AD = DC) => DE = CF 
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC) 
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2) 
Gọi H là giao điểm của BF và DE 
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF 
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H 
c) Dễ thấy AE + EM = AE + EB = AB = không đổi 
(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F) 
Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

18 tháng 8 2017

a. Dễ thấy AEM F là hình chữ nhật => AE = FM 
Dễ thấy tg DFM vuông cân tại F => FM = DF 
=> AE = DF => tg vuông ADE = tg vuông DCF ( AE = DF; AD = DC) => DE = CF 
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC) 
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2) 
Gọi H là giao điểm của BF và DE 
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF 
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H 
c) Dễ thấy AE + EM = AE + EB = AB = không đổi 
(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F) 
Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD

a) ta thấy ab = ab ; bc = cd

=> tứ giác ABCD là hình bình hành 

=> AC và BD cắt nhau tai trung điểm của mỗi đường 

=> AC là đường trung trực của BD

b) Ta có A + D = 180 

=> D = 180 - 100

=> D= 80

Ta lại có B + C = 180

=> C = 180 - 60

=> C = 120