Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình thì bạn tự vẽ nha!
Trên cạnh AD lấy điểm M sao cho AM=AB vì AB<AD(gt) => AM< AD => M nằm giữa A,D
Bạn chứng minh tam giác ABC và tam giác AMC theo trường hợp góc cạnh góc rồi suy ra
CM=BC, gABC=gAMC(1). Tứ giác ABCD có góc A+gB+gC+gD=360 độ mà gA+gC=180
=> gB+gD=180 độ(2). Từ (1),(2)=> gD+gAMC=180 độ
gAMC+gDMC=180 độ ( 2 góc kề bù)
=> gD=gDMC=> tam giác DMC cân tại C
Mạt khác DC=MC, MC=BC=> DC=BC(đpcm)
Trên cạnh AD lấy điểm E sao cho AE=AB .
Xét \(\Delta ABC\)và \(\Delta AEC\)có :
\(AB=AE\)(GT)
\(\widehat{A}_1=\widehat{A}_2\)(vì AC là tia phân giác góc BAD )
\(AC:\)Cạnh chung
Do đó : tam giác ABC = tam giác AEC (c-g-c)
\(\Rightarrow BC=CE\)( cặp cạnh tương ứng ) (1)
\(\widehat{B}_1=\widehat{E}_1\)( cặp góc tương ứng )
Vì tứ giác ABCD có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{C}=360^o\)( tính chất tứ giác lồi )
Mà \(\widehat{A}+\widehat{C}=180^o\)( GT)
\(\Rightarrow\widehat{B}+\widehat{D}=180^o\)
Mà \(\widehat{B}_1=\widehat{E}_1\)
\(\widehat{E}_2+\widehat{E}_1=180^o\)
\(\Rightarrow\widehat{E}_2=\widehat{D}\)
\(\Rightarrow\Delta CDE\)cân tại C .
\(\Rightarrow DC=CE\)(2)
Từ (1) và (2)
\(\hept{\begin{cases}BC=CE\\DC=CE\end{cases}}\)
\(\Rightarrow DC=BC\left(dpcm\right)\)
góc BAD+góc BCD=180 độ
=>ABCD nội tiếp
=>góc ABD=góc ACD và góc CBD=góc CAD
mà góc ACD=góc CAD
nên góc ABD=góc CBD
=>BD là phân giác của góc ABC
B+C=180 đô thì may ra còn có thể giải mặc dù ko biết là có ra đáp án hay không, chứ B=C=180 độ thì vẽ hình ra mà giải được bằng niềm tin à
\(\hept{\begin{cases}\widehat{xAD}+\widehat{BAD}=180\\\widehat{ABC}+\widehat{BAD}=180\end{cases}\Leftrightarrow\widehat{xAD}=\widehat{ABC}\Rightarrow}\)AD//BC (1)
Tổng các góc trong tứ giác là 360
\(\widehat{ABC}+\widehat{BAD}+\widehat{BCD}+\widehat{CDA}=180+\widehat{BCD}+\widehat{CDA}=360\)\(\Rightarrow\widehat{BCD}+\widehat{CDA}=180\)
mặt khác : \(\widehat{ADy}+\widehat{CDA}=180\)\(\Rightarrow\widehat{BCD}=\widehat{yDA}\)=> \(\widehat{yDA}=\widehat{BAD}\)=> AB//CD (2)
từ 1,2 có ABCD là hình bình hành và có đường chéo AC là đường phân giác của \(\widehat{BAD}\)nên ABCD là hình thoi => BC =AD