Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên cạnh AD lấy điểm E sao cho AE=AB .
Xét và có :
(GT)
(vì AC là tia phân giác góc BAD )
Cạnh chung
Do đó : tam giác ABC = tam giác AEC (c-g-c)
( cặp cạnh tương ứng ) (1)
( cặp góc tương ứng )
Vì tứ giác ABCD có :
( tính chất tứ giác lồi )
Mà ( GT)
Mà
cân tại C .
(2)
Từ (1) và (2)
Ta có AB = BC (gt)
Suy ra: ∆ABC cân.
Nên A1ˆ=C1ˆA1^=C1^ (1)
Lại có \(\widehat{A_1}=\widehat{A_2}\) (2) (vì AC là tia phân giác của ˆAA^)
Từ (1) và (2) suy ra \(\widehat{C_1}=\widehat{A_2}\)
nên BC // AD (do \(\widehat{A_1};\widehat{C_2}\) ở vị trí so le trong)
Vẽ hình :
Bài 1:
a: Ta có: AB=AD
nên A nằm trên đường trung trực của BD(1)
Ta có: CB=CD
nên C nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AC là đường trung trực của BD
b: Xét ΔBAC và ΔDAC có
AB=AD
AC chung
BC=DC
Do đó: ΔBAC=ΔDAC
Suy ra: \(\widehat{B}=\widehat{D}\)
=>\(\widehat{B}=\widehat{D}=\dfrac{200^0}{2}=100^0\)