K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong ∆ BCD, ta có:

E là trung điểm của BC (gt)

F là trung điểm của BD (gt)

Suy ra EF là đường trung bình của  ∆ BCD

⇒ EF // CD và EF = 1/2 CD (1)

* Trong  ∆ ACD, ta có: H là trung điểm của AC (gt)

G là trung điểm của AD (gt)

Suy ra HG là đường trung bình của  ∆ ACD

⇒HG // CD và HG = 1/2 CD (2)

Từ (1) và (2) suy ra: EF // HG và EF = HG

Suy ra tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).

* Mặt khác: EF // CD (chứng minh trên)

AB ⊥ CD (gt)

Suy ra EF ⊥ AB

Trong  ∆ ABC ta có HE là đường trung bình ⇒ HE // AB

Suy ra: HE ⊥ EF hay ∠ (FEH) = 90 0

Vậy hình bình hành EFGH là hình chữ nhật.

30 tháng 10 2019

+ Xét tg BCD có EF là đường trung bình => EF//=CD/2

+ Xét tg ACD có GH là đường trung bình => GH//=CD/2

=> EF//=GH => EFGH là hình bình hành (1)

+ Xét tg ABC có HE là đường trung bình => HE=AB/2 mà EF=CD/2 và AB=CD => EF=HE (2)

Từ 91) và (2) => EFGH là hình thoi => EG vuông góc với FH (2 đường chéo của hình thoi vuông góc với nhau)

13 tháng 11 2023

Xét ΔACD có

I,G lần lượt là trung điểm của CA,CD

=>IG là đường trung bình của ΔACD

=>IG//AD và IG=AD/2(1)

Xét ΔBAD có

E,K lần lượt là trung điểm của BA,BD

=>EK là đường trung bình của ΔBAD

=>EK//AD và EK=AD/2(2)

Từ (1) và (2) suy ra EK//IG và EK=IG

Xét tứ giác EKGI có

EK//GI

EK=GI

Do đó: EKGI là hình bình hành

=>EG cắt KI tại trung điểm của mỗi đường(3)

Xét ΔABD có

E,H lần lượt là trung điểm của AB,AD

=>EH là đường trung bình của ΔABD

=>EH//BD và EH=BD/2(4)

Xét ΔCBD có

F,G lần lượt là trung điểm của CB,CD

=>FG là đường trung bình của ΔCBD

=>FG//BD và FG=BD/2(5)

Từ (4) và (5) suy ra EH//FG và EH=FG

Xét tứ giác EHGF có

EH//FG

EH=FG

Do đó: EHGF là hình bình hành

=>EG cắt HF tại trung điểm của mỗi đường(6)

Từ (3) và (6) suy ra EG,FH,IK đồng quy

29 tháng 9 2018

A E B I F C G D H

Gọi I là giao điểm của hai AC và BD (1)

Ta có: AC và BD là hai đường chéo của hình chữ nhật ABCD

=> AI = IC và BI = ID

Xét tam giác ABC có: AE=EB và AI = IC

=> EI là đường trung bình của tam giác ABC

=> EG cắt AC tại I (2)

Xét tam giác ABD có AH=HD và DI=IB

=> HI là đường trung bình của tam giác ABD

=> HF cắt BD tại I (3)

Từ (1),(2),(3) suy ra EG cắt HF tại I (4)

Từ (1),(2),(3),(4) suy ra EG,HF,AC,BD đồng quy tại I

30 tháng 6 2017

Vì HG là đường trung bình của tam giác ACD nên HG // CD. Tương tự EF là đường trung bình của tam giác BCD nên EF // CD.

Hình chữ nhật

17 tháng 1 2017

Cho hình vuông ABCD, O là giao điểm hai đường chéo AC và BD. Qua O kẻ các đường thẳng lần lượt vuông góc với AB,BC,CD,DA tại E,G,F,H.Chứng minh:

a) Bà điểm E,O,F thẳng hàng và ba điểm G,O,H thẳng hàng

b) Tứ giác EGFH lầ hình vuông

1 tháng 7 2018

anh yeu em