K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

kẻ BD

ta có HA=HD
        EA=EB

=> HE là đg tb cuả tam giác ABD 

=> HE//BD; HE=1/2BD (1)

cmtt ta có GF là đg tb cuả tam giác CBD

=> GF//BD;GF=1/2BD (2)

Từ (1)và (2)

=>HE=GF(=1/2BD); HE//GF(//BD)

=> EFGH là hình bình hành

22 tháng 3 2020

uygd56tfru uu

28 tháng 2 2020

(Hình bạn tự vẽ nha :))

ta có AE = 2EB => \(\frac{EB}{AE}=\frac{1}{2}\Rightarrow\frac{EB}{AE+EB}=\frac{1}{1+2}\Rightarrow\frac{EB}{AB}=\frac{1}{3}\)

CMTT⇒\(\frac{BF}{BC}=\frac{1}{3};\frac{DG}{DC}=\frac{1}{3};\frac{DH}{AD}=\frac{1}{3}\)\(\frac{EB}{AB}=\frac{BF}{BC}=\frac{DG}{DC}=\frac{DH}{AD}\left(=\frac{1}{3}\right)\)

Xét ΔABC có \(\frac{EB}{AB}=\frac{BF}{BC}\left(cmt\right)\) => EF//AC (đ/lí Ta-lét đảo)

=>\(\frac{EB}{AB}=\frac{BF}{BC}=\frac{\text{EF}}{AC}=\frac{1}{3}\) (hệ quả đ/lí Ta-lét)

CMTT => HG//AC và \(\frac{HG}{AC}=\frac{HD}{AD}=\frac{1}{3}\)

=> EF//HG và \(\frac{\text{EF}}{AC}=\frac{HG}{AC}\left(=\frac{1}{3}\right)\) => EF = HG

Xét tứ giác EFGH có EF//HG (cmt); EF = HG (cmt)

=> EFGH là hình bình hành

1 tháng 3 2020

hình khó vẽ lắm

31 tháng 12 2021

Chọn C

30 tháng 11 2023

a: AE+EB=AB

BF+FC=BC

CG+GD=CD

DH+HA=DA

mà AB=BC=CD=DA và AE=BF=CG=DH

nên EB=FC=GD=HA

Xét ΔEAH vuông tại A và ΔGCF vuông tại C có

EA=GC

AH=CF

Do đó: ΔEAH=ΔGCF

=>EH=GF

Xét ΔEBF vuông tại B và ΔGDH vuông tại D có

EB=GD

BF=DH

Do đó: ΔEBF=ΔGDH

=>EF=GH

Xét ΔEAH vuông tại A và ΔFBE vuông tại B có

EA=FB

AH=BE

Do đó: ΔEAH=ΔFBE

=>EH=EF và \(\widehat{AEH}=\widehat{BFE}\)

\(\widehat{AEH}+\widehat{HEF}+\widehat{BEF}=180^0\)

=>\(\widehat{BFE}+\widehat{BEF}+\widehat{HEF}=180^0\)

=>\(\widehat{HEF}+90^0=180^0\)

=>\(\widehat{HEF}=90^0\)

Xét tứ giác EHGF có

EF=GH

EH=GF

Do đó: EHGF là hình bình hành

Hình bình hành EHGF có EF=EH

nên EHGF là hình thoi

Hình thoi EHGF có \(\widehat{HEF}=90^0\)

nên EHGF là hình vuông

b: 

AH+HD=AD

=>AH+1=4

=>AH=3(cm)

ΔAEH vuông tại A

=>\(AE^2+AH^2=EH^2\)

=>\(EH^2=3^2+1^2=10\)

=>\(EH=\sqrt{10}\left(cm\right)\)

EHGF là hình vuông

=>\(S_{EHGF}=EH^2=10\left(cm^2\right)\)

22 tháng 2 2020

Bài này có trong SGK! nên dễ

AE=BF=CG=DH

=>EB=FC=DG=HA

Xét ΔAEH vuông tại A và ΔBFE vuông tại B có

AE=BF

AH=BE

=>ΔAEH=ΔBFE
=>EH=EF

Xét ΔBEF vuông tại B và ΔCFG vuông tại C có

BE=CF

BF=CG

=>ΔBEF=ΔCFG

=>EF=FG

Xét ΔFCG vuông tại C và ΔGDH vuông tại D có

CF=DG

CG=DH

=>ΔFCG=ΔGDH

=>FG=GH

=>EF=FG=GH=HE

ΔAHE=ΔBEF
=>góc AEH=góc BFE

=>góc AEH+góc BEF=90 độ

=>góc HEF=90 độ

Xét tứ giác EHGF có

EH=HG=GF=EF

góc HEF=90 độ

=>EHGF là hình vuông

a: Xét ΔEBF và ΔGDH có

EB=GD

góc B=góc D

BF=DH

=>ΔEBF=ΔGDH

=>EF=gh

Xét ΔEAH và ΔGCF có

EA=GC

góc A=góc C

AH=CF

=>ΔEAH=ΔGCF

=>EH=GF

mà EF=GH

nên EHGF là hình bình hành

b: Xét tứ giác AECG có

AE//CG

AE=CG

=>AECG là hbh

=>AC cắt EG tại trung điểm của mỗi đường(1)

EFGH là hbh

=>EG cắt FH tại trung điểm của mỗi đường(2)

ABCD là hbh

=>AC cắt BD tại trung điểm của mỗi đường(3)

Từ (1), (2), (3) suy ra AC,BD,EG,FH đồng quy