K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2022

Em học lớp 6 ko bt giải

17 tháng 1 2022

chị ko đùa đừng có khịa.Chị đang nghiêm túc đấy

10 tháng 9 2018

Bạn kham khảo tại link:

cho tứ giác ABCD. chứng minh rằng AC+BD>AB+CD? | Yahoo Hỏi & Đáp

10 tháng 9 2018

Hello ơi,khác đề nha bạn

31 tháng 5 2020

image

a) Xét 2 tam giác vuông \(HBA\)\(ABC\) có:

\(\widehat{BHA}=\widehat{BAC}=90^0\left(gt\right)\)

\(\widehat{B}\) chung

=> \(\Delta HBA\sim\Delta ABC\left(g-g\right).\)

b):

b1) Xét 2 tam giác vuông \(MHA\)\(HBA\) có:

\(\widehat{AMH}=\widehat{AHB}=90^0\left(gt\right)\)

\(\widehat{MAH}\) chung

=> \(\Delta MHA\sim\Delta HBA\left(g-g\right).\)

b2) Sửa lại đề: Chứng minh \(AM.AB=AN.AC\)

+ Theo câu b1) ta có \(\Delta MHA\sim\Delta HBA.\)

=> \(\frac{AM}{AH}=\frac{AH}{AB}\) (cặp cạnh tương ứng).

=> \(AM.AB=AH.AH\)

=> \(AM.AB=AH^2\) (1).

+ Xét 2 tam giác vuông \(AHN\)\(ACH\) có:

\(\widehat{ANH}=\widehat{AHC}=90^0\left(gt\right)\)

\(\widehat{HAN}\) chung

=> \(\Delta AHN\sim\Delta ACH\left(g-g\right).\)

=> \(\frac{AN}{AH}=\frac{AH}{AC}\) (cặp cạnh tương ứng).

=> \(AN.AC=AH.AH\)

=> \(AN.AC=AH^2\) (2).

Từ (1) và (2) => \(AM.AB=AN.AC\left(đpcm\right).\)

Chúc bạn học tốt!

a) Xét ΔHBA và ΔABC có

\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)

\(\widehat{ABC}\) chung

Do đó: ΔHBA∼ΔABC(g-g)

30 tháng 8 2019

a) \(\left(3x+2\right).\left(x-3\right)-3x.\left(x+\frac{1}{3}\right)\)

\(=3x^2-9x+2x-6-\left(3x^2+x\right)\)

\(=3x^2-9x+2x-6-3x^2-x\)

\(=\left(3x^2-3x^2\right)+\left(-9x+2x-x\right)-6\)

\(=-8x-6.\)

Chúc bạn học tốt!

30 tháng 8 2019

\(B=\left(3x-2\right)^2-\left(x+2\right).\left(x-2\right)\)

\(=\left(3x-2\right)^2-\left(x^2-2^2\right)\)

\(=9x^2-12x+4-x^2+4\)

\(=8x-12x+8\)

\(C=\left(x+4\right)^2-7x.\left(x-2\right)\)

\(=x^2+8x+16-\left(7x^2-14x\right)\)

\(=x^2+8x+16-7x^2+14x\)

\(=-6x^2+22x+16\)

\(D=-4x.\left(2x-7\right)+\left(x+5\right)^2\)

\(=-8x^2+28x+x^2+10x+25\)

\(=-7x^2+38x+25\)

29 tháng 8 2021

Bài 1 cơ ạ 😅😅

18 tháng 9 2019

Hình bạn tự vẽ nha!

a) Xét \(\Delta ABC\) có:

\(E\) là trung điểm của \(AB\left(gt\right)\)

\(F\) là trung điểm của \(AC\left(gt\right)\)

=> \(EF\) là đường trung bình của \(\Delta ABC.\)

=> \(EF=\frac{1}{2}BC\) (định lí đường trung bình của tam giác)

Thay số vào ta được:

\(5=\frac{1}{2}BC\)

\(\Rightarrow BC=5:\frac{1}{2}\)

\(\Rightarrow BC=10cm.\)

Còn câu b) thì mình đang nghĩ nhé.

Chúc bạn học tốt!

21 tháng 4 2018

\(A=2x^2-8x+1\)

\(A=2\left(x^2-4x+\frac{1}{2}\right)\)

\(A=2\left[x^2-2.2x+4-4+\frac{1}{2}\right]\)

\(A=2\left[\left(x-2\right)^2-\frac{7}{2}\right]\)

\(A=2\left(x-2\right)^2-7\ge7\forall x\)

dấu " = " xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

vậy MIN A = 7 khi \(x=2\)

\(B=-5x^2-4x+1\)

\(B=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)\)

\(B=-5\left(x^2+2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}-\frac{1}{5}\right)\)

\(B=-5\left[\left(x+\frac{2}{5}\right)^2-\frac{9}{25}\right]\)

\(B=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\forall x\)

dấu \("="\)  xảy ra khi \(x+\frac{2}{5}=0\Leftrightarrow x=\frac{-2}{5}\)

vậy MIn B = \(\frac{9}{5}\)  khi \(x=\frac{-2}{5}\)

còn lại làm tương tự nhé 

21 tháng 4 2018

Ta có : 

\(A=2x^2-8x+1\)

\(A=\left(x^2-4x+4\right)+\left(x^2-4x+4\right)-7\)

\(A=2\left(x^2-4x+4\right)-7\)

\(A=2\left(x-2\right)^2-7\ge-7\)

Dấu "=" xảy ra khi và chỉ khi \(2\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(x-2=0\)

\(\Leftrightarrow\)\(x=2\)

Vậy GTNN của \(A\) là \(-7\) khi \(x=2\)

Chúc bạn học tốt ~ 

21 tháng 4 2018

\(9a^2+b^2-6a+2b+5\)

\(=\left[\left(3a\right)^2-2.3.a+1\right]+\left(b^2+2b+1\right)+3\)

\(=\left(3a-1\right)^2+\left(b+1\right)^2+3\)

Ta thấy: \(\left(3a-1\right)^2\ge0;\left(b+1\right)^2\ge0\)\(\forall a;b\)

\(\Rightarrow\left(3a-1\right)^2+\left(b+1\right)^2+3>0\forall a;b\)

\(\Rightarrow9a^2+b^2-6a+2b+5>0\forall a;b\)