K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

\(A=\frac{x}{x^2+1}+\frac{5\left(x^2+1\right)}{2x}=\frac{x}{x^2+1}+\frac{x^2+1}{4x}+\frac{9}{4}.\frac{x^2+1}{x}\)

\(\ge2\sqrt{\frac{x}{x^2+1}.\frac{x^2+1}{4x}}+\frac{9}{4}.\frac{2\sqrt{x^2.1}}{x}=1+\frac{9}{2}=\frac{11}{2}\)

Dấu "=" xảy ra khi \(\left(\frac{x}{x^2+1}=\frac{x^2+1}{4x}\text{ và }x^2=1\right)\Leftrightarrow x=1\)

Vậy GTNN của biểu thức là 11/2.

19 tháng 12 2020

x+y=1=>y=1-x

\(Q=2x^2-y^2+x+\frac{1}{x}+2020\)\(=2x^2-\left(1-x\right)^2+x+\frac{1}{x}+2020\)\(=2x^2-\left(1-2x+x^2\right)+x+\frac{1}{x}+2020\)\(=2x^2-1+2x-x^2+x+\frac{1}{x}+2020\)

\(=\left(x^2+2x+1\right)+\left(x+\frac{1}{x}\right)+2018\)\(=\left(x+1\right)^2+\left(x+\frac{1}{x}\right)+2018\)

Ta có: \(\left(x+1\right)^2\ge0\forall x>0\)

Áp dụng BĐT Cô-si cho 2 số dương \(x\)và \(\frac{1}{x}\):

\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\)

\(\Rightarrow Q\ge2+2018=2020\)

Dấu '=' xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1=0\\x=\frac{1}{x}\end{cases}\Leftrightarrow x=-1}\)\(\Rightarrow y=1-\left(-1\right)=2\)

Vậy \(minQ=2020\Leftrightarrow x=-1;y=2\)

6 tháng 4 2021

x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1

Suy ra : \(A=2x^2-\left(1-x\right)^2+x+\frac{1}{x}+1=2x^2-1+2x-x^2+x+\frac{1}{x}+1\)

\(=x^2+3x+\frac{1}{x}=x^2-x+\frac{1}{4}+4x+\frac{1}{x}+\frac{1}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+4x+\frac{1}{x}+\frac{1}{4}\)

Mà \(4x+\frac{1}{x}\ge2\sqrt{4x.\frac{1}{x}}=2.2=4\). Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2

Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2

Vậy min\(A=4+\frac{1}{4}=\frac{17}{4}\)<=> x = y = 1/2

19 tháng 4 2021

Cách giải như sau

x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1

Suy ra : A=2x2−(1−x)2+x+1x +1=2x2−1+2x−x2+x+1x +1

=x2+3x+1x =x2−x+14 +4x+1x +14 

=(x−12 )2+4x+1x +14 

Mà 4x+1x ≥2√4x.1x =2.2=4. Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2

Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2

Vậy minA=4+14 =174 <=> x = y = 1/2

          HOK TỐT

21 tháng 8 2021

Áp dụng BĐT AM-GM:

\(P=\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)

\(=\dfrac{x^2}{y-1}+4\left(y-1\right)+\dfrac{y^2}{x-1}+4\left(x-1\right)-4\left(x+y\right)+8\)

\(\ge2\sqrt{\dfrac{x^2}{y-1}.4\left(y-1\right)}+2\sqrt{\dfrac{y^2}{x-1}.4\left(x-1\right)}-4\left(x+y\right)+8\)

\(\ge4\left(x+y\right)-4\left(x+y\right)+8=8\)

\(\Rightarrow P_{min}=8\Leftrightarrow x=y=2\)

NV
21 tháng 8 2021

\(\dfrac{x^2}{y-1}+4\left(y-1\right)\ge4x\) ; \(\dfrac{y^2}{x-1}+4\left(x-1\right)\ge4y\)

Cộng vế:

\(P+4\left(x+y\right)-8\ge4\left(x+y\right)\Rightarrow P\ge8\)

Dấu "=" xảy ra khi \(x=y=2\)

NV
26 tháng 3 2022

\(P=\dfrac{x^2+y^2+6}{x+y}=\dfrac{x^2+y^2+2xy+4}{x+y}=\dfrac{\left(x+y\right)^2+4}{x+y}=x+y+\dfrac{4}{x+y}\)

\(P\ge2\sqrt{\left(x+y\right).\dfrac{4}{x+y}}=4\)

\(P_{min}=4\) khi \(x=y=1\)

9 tháng 5 2021

-5

NV
27 tháng 4 2021

\(K=\left(4xy+\dfrac{1}{4xy}\right)+\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{5}{4xy}\)

\(K\ge2\sqrt{\dfrac{4xy}{4xy}}+\dfrac{4}{x^2+y^2+2xy}+\dfrac{5}{\left(x+y\right)^2}\ge2+4+5=11\)

\(K_{min}=11\) khi \(x=y=\dfrac{1}{2}\)

NV
17 tháng 8 2021

\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\)

Đặt \(\dfrac{x}{y}=a\Rightarrow0< a\le\dfrac{1}{4}\)

\(P=\dfrac{\left(\dfrac{x}{y}\right)^2-\dfrac{2x}{y}+2}{\dfrac{x}{y}+1}=\dfrac{a^2-2a+2}{a+1}=\dfrac{4a^2-8a+8}{4\left(a+1\right)}=\dfrac{4a^2-13a+3+5\left(a+1\right)}{4\left(a+1\right)}\)

\(P=\dfrac{5}{4}+\dfrac{\left(1-4a\right)\left(3-a\right)}{4\left(a+1\right)}\ge\dfrac{5}{4}\)

Dấu "=" xảy ra khi \(a=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)