Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{x_1}{x_2}=\frac{y_2}{y_1}\Rightarrow\frac{y_1}{x_2}=\frac{y_2}{x_1}=\frac{y_1+y_2}{x_2+x_1}\left(1\right)\)
Vì \(x_1=5,x_2=2\)và \(y_1+y_2=21\)nên từ \(\left(1\right)\)ta có :
\(\frac{y_1}{2}=\frac{y_2}{5}=\frac{y_1+y_2}{2+5}=\frac{21}{7}=3\left(2\right)\)
Từ (2) => \(\orbr{\begin{cases}\frac{y_1}{2}=3\\\frac{y_2}{5}=3\end{cases}}\Rightarrow\orbr{\begin{cases}y_1=6\\y_2=15\end{cases}}\)
b) Ta có : \(\frac{x_1}{x_2}=\frac{y_2}{y_1}=\frac{2x_1}{2x_2}=\frac{3y_2}{3y_1}=\frac{2x_1-3y_2}{2x_2-3y_1}\left(1\right)\)
Vì \(x_2=3,y_1=7\)và \(2x_1-3y_2=30\)nên từ \(\left(1\right)\)ta có :
\(\frac{x_1}{3}=\frac{y_2}{7}=\frac{2x_1-3y_2}{2\cdot3-3\cdot7}=\frac{30}{-15}=-2\left(2\right)\)
Từ \(\left(2\right)\)suy ra : \(\orbr{\begin{cases}\frac{x_1}{3}=-2\\\frac{y_2}{7}=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x_1=-6\\y_2=-14\end{cases}}\)
Câu b x2 = 3(tính rồi nhé,sửa câu đó lại nhé),phải tính x1 và y2 mới đúng.
Lời giải:
Vì $x,y$ tỉ lệ nghịch nên tích $xy$ không đổi
a.
Ta có:
$x_2y_2=x_1y_1=-45$
$\Rightarrow y_2=\frac{-45}{x_2}=\frac{-45}{9}=-5$
b.
$x_1y_1=x_2y_2$
$2y_1=4y_2$
$y_1=2y_2$. Thay vô $y_1+y_2=-12$ thì:
$2y_2+y_2=-12$
$3y_2=-12$
$y_2=-4$
$y_1=2y_2=2(-4)=-8$
c.
$x_1y_1=x_2y_2$
$12x_1=3y_2$
$4x_1=y_2$
Thay vô $x_1+2y_2=18$ thì:
$x_1+2.4x_1=18$
$9x_1=18$
$x_1=2$
$y_2=4x_1=4.2=8$
Vì x,y tỉ lệ nghịch nên \(x_1y_1=x_2y_2\)
\(\Rightarrow\dfrac{y_1}{x_2}=\dfrac{y_2}{x_1}=\dfrac{y_1}{2}=\dfrac{y_2}{5}=\dfrac{y_2+y_1}{2+5}=\dfrac{21}{7}=3\\ \Rightarrow\left\{{}\begin{matrix}y_1=2\cdot3=6\\y_2=3\cdot5=15\end{matrix}\right.\)