K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

a ) giả sử x và y là tỉ la\ệ nghịch theo hệ số a 

ta có xy=a suy ra y=a/x    (1)

mà y là tỉ lệ nghịch theo hệ số tỉ lệ b ta có yz =b    (2)

từ (1) và (2) ta có a/y.z suy ra x-a/b.z

vậy x tỉ lệ thuận với z theo hệ số tỉ lệ a/b(a.b là hằng số khác nhau 0)

tự giải tiếp nhé 

CHÚC BẠN HỌC GIỎI 

TK MÌNH NHÉ

14 tháng 12 2018

Vì X tỉ lệ thuận với y, và y tỉ lệ thuận với z, nên ta có:

y=2x=5z

\(\frac{x}{z}=\frac{5}{2}\)

\(\Rightarrow\)x = \(\frac{5}{2}z\)

Vậy Z tỉ lệ với x theo hệ số tỉ lệ là:\(\frac{5}{2}\)

14 tháng 12 2018

x tỉ lệ thuận với y theo hệ số tỉ lệ 2 => x=2y

y tỉ lệ thuận với z theo hệ số tỉ lệ 5 => y=5z

=> x=2y=2.5z=10z

Vậy x tỉ lệ thuận với z theo hệ số tỉ lệ 10.

11 tháng 8 2016

Câu A đóa bạn

28 tháng 8 2018

x và y tỉ lệ thuận với 3 và 5 \(\Rightarrow\frac{x}{3}=\frac{y}{5}\) (1)

y và z tỉ lệ thuận với 4 và 5 \(\Rightarrow\frac{y}{4}=\frac{z}{5}\) (2)

Từ (1);(2) suy ra: \(\frac{x}{12}=\frac{y}{20}=\frac{z}{25}=\frac{x+y+z}{12+20+25}=\frac{456}{57}=8\)

\(\Rightarrow\hept{\begin{cases}x=8.12=96\\y=8.20=160\\z=8.25=200\end{cases}}\)

Vậy ...

28 tháng 8 2018

ta có : \(\frac{x}{3}\)\(\frac{y}{5}\)\(\frac{y}{4}\)=\(\frac{z}{5}\)

=> \(\frac{x}{12}\)=\(\frac{y}{20}\);\(\frac{y}{20}\)=\(\frac{z}{25}\)

=> \(\frac{x}{12}\)\(\frac{y}{20}\)\(\frac{z}{25}\)

áp dụng tính chất của dãy tỉ số bằng nhau , ta có

\(\frac{x}{12}\)\(\frac{y}{20}\) = \(\frac{z}{25}\)\(\frac{x+y+z}{12+20+25}\)=\(\frac{456}{57}\)= 8

=> x = 12 x 8=  96

y = 20 x 8 =160

z = 25 x8 = 200

x tỉ lệ thuận với y theo hệ số tỉ lệ k=0,5 nên x=0,5y

z tỉ lệ thuận với y theo hệ số tỉ lệ là k=8/3 nên z=8/3y

=>\(\dfrac{x}{z}=\dfrac{1}{2}:\dfrac{8}{3}=\dfrac{1}{2}\cdot\dfrac{3}{8}=\dfrac{3}{16}\)

=>x=3/16z

=>z=16/3x

=>z và x tỉ lệ thuận với hệ số tỉ lệ là k=16/3

Ta có: \(\dfrac{x}{3}=\dfrac{y}{5}\)

nên \(\dfrac{x}{12}=\dfrac{y}{20}\left(1\right)\)

Ta có: \(\dfrac{y}{4}=\dfrac{z}{5}\)

nên \(\dfrac{y}{20}=\dfrac{z}{25}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{x}{12}=\dfrac{y}{20}=\dfrac{z}{25}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{12}=\dfrac{y}{20}=\dfrac{z}{25}=\dfrac{x+y+z}{12+20+25}=\dfrac{456}{57}=8\)

Do đó: x=96; y=160; z=200

Vì `z` tỉ lệ thuận với `y` theo hệ số tỉ lệ `3 -> z= 3y (1)`

Vì `y` tỉ lệ thuận với `x` theo hệ số tỉ lệ `5 -> y=5x(2)`

Thay `(2)` vào `(1)` ta có:

`z = 3*5*x`

`z= (3*5)*x`

`-> z` tỉ lệ thuận với `x` theo hệ số tỉ lệ `3*5`.