Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Cách giải: Ta có:
log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0
Thay y = 4 x vào biểu thức P và biến đổi ta thu được
P = - 9 log 2 2 + 27 log 2 x - 27 .
Do y ≥ 1 nên x ≤ 4 . Suy ra 1 2 ≤ x ≤ 4 . Đặt t = log 2 x , khi đó - 1 ≤ t ≤ 2 .
Xét hàm số f(t0 = - 9 t 2 + 27t - 27; t ∈ - 1 ; 2
Ta có f ' (t) = -18t + 27; f ' (t) = 0 ⇔ t = 3 2
f (-1) = -63; f (2) = -9; f 3 2 = 27 4
Vậy
m a x P = - 27 4 ⇔ x = 2 2 ; y = 2
Đáp án A
Giả thiết bài toán cho ta x > 0 và x 2 - 4 y 2 = 4
Không mất tính tổng quát, giả sử y ≥ 0 . Đặt t = x - y. Khi đó ta có 3 y 2 - 2 t y + 4 - t 2 = 0
Phương trình này có nghiệm khi và chỉ khi ∆ = 4 t 2 - 12 4 - t 2 ≥ 0 ⇒ t ≥ 3
Do x > 0 và y ≥ 0 nên t = x - y = x - y ≥ 3
Đáp án A